DFT+DMFT to correlated electronic structures: Recent developments and applications to iron-based superconductors

Zhiping Yin

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, United States.

Dynamical mean field theory (DMFT) has been widely used to study correlated systems which have open d or f shell and require treatment of correlation effects beyond static mean field theories such as the density functional theory (DFT). In this talk, I will first discuss recent developments in our group of a fully charge self-consistent implementation of DMFT into a full-potential all-electron DFT code, so-called DFT+DMFT, where the impurity problem is solved by a highly accurate continuous-time quantum Monte-Carlo solver. Then I will show some applications of our implementation of DFT+DMFT, taking the iron-based superconductors as examples, to compute various physical properties such as photo-emission spectroscopy, optical conductivity, spin and charge susceptibility, valence fluctuations, and so on. In the meantime, I will demonstrate that our DFT+DMFT provides a much better description of many experimental observable in comparison to the DFT. Hence the DFT+DMFT is a very promising tool to help us understand and design correlated functional materials.