
CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Electronic structure calculations on
Thousands of CPU's and GPU's

Emil Briggs, North Carolina State University

1. Outline of real-space
 Multigrid (RMG)
2. Trends in high performance
 computing
3. Scalability limitations
4. Hybrid/threaded models
5. Scaling tests
6. Mixed precision
7. GPU acceleration

Collaborators: Wenchang Lu, Miroslav Hodak, Jerzy Bernholc
North Carolina State University

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Real-space Multi-Grid (RMG)

 Density functional equations solved
directly on the grid instead of with plane
waves

 Multigrid techniques remove instabilities
by working on one length scale at a time

 Convergence acceleration and automatic
preconditioning on all length scales

 Non-periodic boundary conditions are as
easy as periodic

 Compact “Mehrstellen” discretization

 Allows for efficient massively parallel
implementation (no FFTs)

][])[(][iiiNLeffi SBVVBA φεφφ =++

See E. L. Briggs, D. J. Sullivan and J.
Bernholc Phys. Rev. B 54, 14362 (96).

Multigrids

Basis

Ultrasoft pseudopotentials:
M. Hodak, S. Wang, W. Lu and J.
Bernholc, PRB 76, 085108 (07)

Compact Real-Space Discretization

Higher accuracy achieved by using more local information.
Local nature also important for MPP implementations.
Both ∇2ψ and V are discretized along several grid points
in each coordinate direction (we use 3 points per direction)
leads to a generalized eigenvalue problem

 A[ψi] + B[Vψi] = eiB[ψi] + O(h4)

A : kinetic energy operator to second order in h
B : smoothing operator, I to second order in h
A and B are components of the Mehrstellen discretization.
Two dimensional stencil form: 12h2 A 12B

40-8 -8
-8

-8-2

-2

-2

-2
8
1

1
1 1

Alternate discretization: Central Finite difference operators
Chelikowsky et. al. Phys. Rev. Lett. 72, 1240 (1994)

We developed 3D Mehrstellen discretizations
for many symmetries of crystal lattices (sc,
bcc, fcc, orthorhombic and hexagonal) PRB
54, 14362 (1996) and to be published.

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Trends in HPC architecture

Multisocket/multicore SMP nodes
1999 – Cray T3E 1-socket and core per node
2013 – Cray XK6 2-sockets and 32 cores per node
2020 - ?

High speed interconnect between nodes
Infiniband
Myrinet
Cray Gemini

GPU/Accelerator
Nvidia Fermi/Tesla/Kepler
AMD Radeon HD
Intel Xeon PHI

Schematic of Cray XE6

Multicore CPU's

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Challenges for Electronic structure codes

Single core performance growth slowing down

Typical single core performance 2006 vs 2013
2006 - AMD Opteron 15 SPECfp
2013 - Intel Xeon 80 SPECfp 5.3 times faster

Typical single socket performance 2006 vs 2013
2006 - AMD Opteron (4 cores) 18 SPECfp_rate
2013 - Intel Xeon (8 cores/ht) 325 SPECfp_rate 18.1 times faster

Core/socket performance difference due to more cores per socket

Future performance gains will increasingly come from adding cores
and/or accelerators rather than improved single core performance

CHiPSCenter for High Performance Simulation

RMG parallelization 1990's

Based on MPI: Message passing interface developed during the early 90s
Standardized and portable
Designed for distributed memory operations
Supports both point to point and collective communications
Each MPI process ran on a single single network node

MPI_Send(buffer, count, type,
 destination, tag, comm)

MPI Process 0 MPI Process 1

Scalability – late 1990's

Scaling of RMG in 1990's

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Limitations on scalability

Problems with both MPI specifications and implementations
Vendors and standard bodies working on addressing MPI issues
Applications need to consider the issues as well.

Common programming model circa 2000 was still 1 MPI process/core
And 1 core per network node

Situation today. Core counts getting very large!
Current machines 400,000 cores
Next generation 1,000,000 cores

AMD bulldozer chip – 8 cores
Opteron 6xx - 2 chips/multi-chip module
Cray XE6 – 2 Opterons/network node
32 cores per network node!

CHiPSCenter for High Performance Simulation

Examples

MPI Alltoallv – each process sends data to
every other process and also receives data
from every other process.
IBM Blue Gene/P results
Actual transfer sizes are 0 bytes!

Poor scaling due to MPI specification!

R. Thakur et, al Proceedings of the 16th
European PVM/MPI Users Group
Meeting, Springer-Verlag Berlin, 2009

Scalability issues in the MPI specification

Alltoallv functions take array arguments with
dimension equal to the number of MPI processes
Same problem in other MPI functions.

Implementation example: Global reduction operations (e.g. sum data over all
processes and distribute the summed result back to all processes).
Tree algorithm implementation scales as Nlog(N) so execution time increases
with N.

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Hybrid MPI/threads/OpenMP to improve scalability

Use 1 MPI process per node rather than 1 process per core
Inter node parallelization uses traditional MPI
Intra node parallelization uses shared memory threads
Extra cores used via Libraries, Pthreads, Openmp

Process 0 Process 1

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Hybrid model benefits/drawbacks

Benefits
Order of magnitude reduction in MPI process count
Corresponding increase in real space domain size per node
Surface to volume ratio reduced for finite differencing

Cray XK7 = 16 cores/node Cray XE6 = 32 cores/node

Drawbacks
Additional programming complexity required to utilize all cores on a node
Greater overhead (potentially worse performance for small problems)

Standard model 1 MPI process/core Hybrid model 1 MPI process/node

Core 1

Core 2

Core 0

Core 3

Node 0

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Vendor libraries

Vendor supplied BLAS, LAPACK, etc. Easy to use (link and runtime control)
Large performance gains possible with little work

DGEMM BLAS3 function
performs matrix multiply
C = A x B

Tests performed on Cray
XT5 with 12 core CPU's

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Open MP

Shared memory multiprocessing Implemented on top of a compute
platforms native threading model

Excellent implementations available for a wide range of platforms
Source code modifications via pragmas and directives
Pragma provides additional information to compiler outside of the standard
Language definition

Particularly easy to use for loop level parallelism
Not as well suited for other types of parallelism

 #pragma parallel for private(istate,sp,t1)
 for (idx = 0; idx < nbasis; idx++)
 {
 A[idx] = B[idx] + C[idx];
 } /*end for idx */

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Pthreads

Available for Unix/linux platforms. Provides compete flexibility and control.
Careful analysis of algorithms required. A higher level of programming
expertise is necessary. More extensive source code modifications than OpenMP.

Best suited for task based parallelization schemes where complex
synchronization and locking between tasks may be required. (e.g. each
separate tab or window in a web browser could use a different thread.

void thread_function(void *arg)
{

}

// Explicitly create thread which executes thread_function
ret = pthread_create(&thread, &thread_attrs,
 (void *)thread_function, (void *)arg);

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

RMG Implementation

RMG uses MPI for inter-node parallelization.
Vendor libraries, OpenMP and Pthreads are
used for intra-node. Workload divides naturally
into two separate types.

Multigrid preconditioning:
Electronic orbitals may be processed independently.
Nearest neighbor inter-node communications dominate.
Large numbers of small messages. Latency important.
Little opportunity to use parallel library routines.

Orthogonalization and/or subspace diagonalization:
Electronic orbitals must be processed together.
Large global inter-node communications dominate.
Easy to use library routines

(BLAS3, LAPACK, SCALAPACK).

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Pthreads for multigrid preconditioner

Consider a typical electronic structure problem with N orbitals
The computer system used for solution has P processing cores per node
Orbitals may be processed independently and N>>P
Natural parallelization method is to assign each orbital to a single core
OpenMP or Pthreads should work equally well

While each thread can operate independently is this the best approach?

Core 1

Core P-1
Core P-2

Core 0 Core 0
Core 1

Core P-2
Core P-1

 ψ0

ψP-1

ψ1

ψP-2

Node 0 Node 1

CHiPSCenter for High Performance SimulationNC STATE UNIVERSITY

Hiding latency

Finite difference communications are nearest neighbor
Message sizes are small and reducing/hiding latency is critical to performance

Combine small messages from multiple threads
Overlap communications (blue) and computations (red) using blocks of threads

Conceptually simple, implementation is non-trivial
Careful synchronization and locking between threads/tasks required
Greater flexibility and control of pthreads made it the better choice

Threads

Communication

Computation

Time axis

Overlap

CHiPSCenter for High Performance Simulation

Orthogonalization/Diagonalization

Computational tasks
1. Generate matrix element contributions from each node
2. Sum contributions from all nodes
3. Diagonalize resultant matrix (N3 scaling) dominant for large problems

Hybrid model improvements for Step 1 using threaded DGEMM
Step 2 uses MPI_Allreduce - improvements mainly dependent on vendors
Various library packages available for Step 3 (LAPACK, SCALAPACK,

 MAGMA, others) performance improvements from threads/GPU

Hybrid model and memory constraints
Consider Cray XE6 with 32 cores and 32 Gbytes/RAM node
Using 1 MPI process per core means only 1 Gbyte RAM/process
Not enough for large problems! Memory overhead and data structures

needed by each MPI process leaves little available free memory

Overhead process Free RAM node

1 MPI process/core 0.5 Gbyte 16.0 Gbytes

1 MPI process/node 1.0 GByte 31.0 Gbytes

CHiPSCenter for High Performance Simulation

Scaling test

Test problem: Gas phase Amyloid
Beta 1-42 protein
Test system: Cray XK7
1 node = 16 Opeteron cores + 1
Nvidia K20x GPU accelerator
Strong scaling

Largest run used 139,392 CPU
cores and 8712 GPU's.

Each node has 16 cores

CHiPSCenter for High Performance Simulation

Mixed precision

Single precision can improve performance
Effective doubling of cache size and local memory bandwidth
Effective doubling of network communication bandwidth
Little impact on network latency

Initial tests in single precision
Much faster but accuracy not sufficient for many cases
Some problems exhibited numerical instability or failure to converge

Alternative approach using mixed precision

Multigrid preconditioner implemented in single precision
Orthogonalization and diagonalization performed in double precision
(Mixed precision via Cray IRT failed)

Cray IRT (Iterative refinement toolkit) consists of mixed precision
solvers that use 32 bit factorizations to improve performance.

CHiPSCenter for High Performance Simulation

Accuracy and convergence tests

Test system: C60 molecule
Mixed precision total energy: -340.981366533 Hartree
Double precision total energy: -340.981366514 Hartree

Mixed precision
6.72 secs/SCF step

Double precision
8.12 secs/SCF step

Speedup = 1.2

CHiPSCenter for High Performance Simulation

GPU/Accelerators

Top 500 list (November 2012): 62 machines with accelerators

Titan at ORNL Cray XK7: 27.1 peak PFLOPS and 17.59 Linpack
PFLOPS

18,688 CPU's with 299,008 cores 2.8 DP PFLOPS
18,688 Nvidia K20x GPU's 24.3 DP PFLOPS

Blue Waters at NCSA Cray XE6/XK7: 11.61 peak PFLOPS
24,576 CPU's with 393,216 cores

 3,072 Nvidia K20x GPU's

GPU characteristics
Highly parallel
Low clock speed
Large memory bandwidth

CHiPSCenter for High Performance Simulation

Example architecture Nvidia K20x

7.1 billion transistors
732 MHz clock speed
15 SMX units
2688 cores
6 memory controllers

3.7 TFLOP SP
1.3 TFLOP DP
250 GB/sec memory
Bandwidth

PCI Express System
Interface

CHiPSCenter for High Performance Simulation

Programming Models: CPU vs GPU

GPU programming very different from CPU

CPU:
High clock speed, small number of powerful execution units.
Memory latency hidden by caches and out of order execution.
Good single-threaded performance.

GPU:
Low clock speed, large number of weaker execution units.
Memory latency hidden by high thread counts.
Poor single-threaded performance.

Most HPC codes have components that only run well on CPU's
Mixed CPU/GPU model required
Data transfer issues from CPU to GPU (PCI bus latency)

Hints: Avoid writing GPU code as much as possible.
Use vendor supplied libraries.
Data transfer issues still require careful consideration

CHiPSCenter for High Performance Simulation

GPU/CPU/Network data transfers

High performance GPU's use a separate memory space from the CPU's
Data transfers between GPU and GPU-RAM peak bandwidth 250GB/s, latency 200ns

Data transfers between CPU and SystemRAM peak bandwidth 25-100 GB/s, latency 50ns

Data transfers across PCI Express v2.x bus peak bandwidth 8GB/s, latency 200ns

Computational tasks suitable for GPU – long running, high ratio FLOPS/mem

Further issue: GPU data transfers between network nodes have to traverse CPU

CHiPSCenter for High Performance Simulation

CPU/GPU case 1

Test system: C60 molecule with 200 total electronic orbitals
Compute matrix elements <ψ|A|ψ> using GPU dgemm
M=200,N=200,K=110,592 GPU dgemm = 294 GFLOPS

Transfer overhead comparable to computation time
GPU utilization low 22% of peak (peak=1.3 TFLOP)

Data transfer

Computation

CHiPSCenter for High Performance Simulation

CPU/GPU case 2

Test system: C60 molecule with 800 total electronic orbitals
Compute matrix elements <ψ|A|ψ> using GPU dgemm
M=800,N=800,K=110,592 GPU DGEMM 781 GFLOPS

Transfer fraction smaller and computational speed 2.7x faster
GPU utilization at 60% of peak (peak = 1.3 TFLOP)
GPU's are best suited for bigger problems! N3 scaling of diagonalization
when going from 200 orbitals to 800.

Data transfer

Computation

CHiPSCenter for High Performance Simulation

GPU performance improvements

Small test case: C60 molecule in vacuum
60 atoms: 200 electronic orbitals

CPU only calculation CPU/GPU calculation
Xeon workstation:12 cores Xeon workstation:12 cores
No GPU's 1 Nvidia K20 GPU
10.32 seconds/SCF step 6.72 seconds/SCF step

Speedup of approximately 1.53

Large test case: Solvated amyloid beta protein fragment
3337 atoms: 4672 electronic orbitals

CPU only calculation CPU/GPU calculation
2904 nodes: 92,928 Opteron cores 2904 nodes: 46,464 Opteron cores
No GPU's 2904 Nvidia K20x GPU's
76 seconds/SCF step 25 seconds/SCF step

Speedup of approximately 3.02

CHiPSCenter for High Performance Simulation

Summary

HPC performance coming more and more from multicore and GPU.
Different programming methods required to fully utilize the hardware.

Hybrid threaded model used to reduce the number of MPI process's.
Marked improvement in scalability for large problems.

Mixed precision methods can provide substantial performance gains
Not all problems are suitable for mixed precision. Careful tests needed.

GPU accelerators can provide order of magnitude gains on some tasks.
Programming is difficult compared to CPU's. Vendor libraries best choice.
Data transfer issues between CPU/GPU/Network critical.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

