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critical temperatures). In other words, the descriptor is the language 
with which the researcher speaks to the database, and thus the 
heart of any e!ective HT implementation. In Table 1 we illustrate 
examples of recently introduced descriptors.

Once a good descriptor is identi#ed, the search for better 
materials within the repository can be performed intrinsically or 
extrinsically, depending on whether the optimum solutions are 
already included in the set of calculations or not. Intrinsic searches 
include just step (iii), require only fast descriptors, and may employ 
various informatics techniques. Examples of previous such searches 
include the scanning of better cathode materials27,28, and the uncov-
ering of unknown compounds9,29,30, novel topological insulators16 or 
thermoelectric materials15. Extrinsic searches involve all three steps, 
because the search for an optimal solution includes iterations lead-
ing to an expansion of the repository.

An important component of extrinsic HT computational research 
is a scheme capable of using the evaluation of descriptors on exist-
ing database entries to guide new calculations not yet included in 
the database. Examples of such schemes published in the literature 
comprise evolutionary and genetic algorithms7,8, data mining of 
spectral decompositions3 and Bayesian probabilities10, re#nement 
and optimization by cluster expansion13,31 and structure map analy-
sis32–34. Neural networks35,36 and support vector machines37 have 
also been utilized in a few cases. $ese methods may sometimes 
be used to bypass step (iii) of the HT analysis, that is, the formula-
tion of a physically meaningful descriptor, so that a search can still 
be implemented even with only a super#cial understanding of the 
physical problem.

Areas of current application
Following the general framework outlined above, we describe in 
this section a few speci#c examples of computational HT studies 
reported in the literature, ordered by increasing degree of complexity. 

!ermodynamics for the identi"cation of binary and ternary 
compounds. $e identi#cation of stable structures is the #rst step 
in the design of materials with various speci#c functionalities. $e 
proper descriptor of alloy stability, the formation enthalpy, is the 
simplest example of a parameter used for HT materials development.

Alloys are the workhorse material of many important techno-
logical applications. $us, #nding new and improved alloys could 

be transformative in some areas and would have a substantial 
economic impact. When improving an existing alloy or designing 
a new one, scientists rely on databases of alloy thermodynamics 
and phase diagrams (for example, the Massalski’s Binary Alloy 
Phase Diagrams38 and the Villars’s et  al. Pauling File39). Although 
the utility of these repositories is tremendous, they could be of even 
greater use if they were more complete. Experimental complete-
ness is di%cult to achieve due to the vast combination space and 
because experimentation is o&en di%cult: it requires high tempera-
tures or pressures, very long equilibration processes, or may involve 
hazardous, highly reactive, poisonous or radioactive materials. 
Computational compilation of the properties of materials is more 
feasible and will lead to much more complete repositories. Examples 
that demonstrate this are the almost simultaneous prediction and 
experimental veri#cation of the previously unknown C11b structure 
of the Pd2Ti compound9,40, the veri#cation by Niu et al.41 of an ear-
lier prediction42 that the CrB4 compound, thought for 40 years to 
have an oI10 structure, is actually more stable in an oP10 structure, 
and the simultaneous synthesis and solution, by an ab initio evolu-
tionary search, of an unexpectedly complex tI56 crystal structure of 
CaB6 (ref. 43).

In alloy design, the targets of the formation enthalpy descrip-
tor are stable phases. $e HT ab initio method explores the phase 
stability landscape of alloys by calculating the descriptor for a large 
number of possible structures. An HT code must perform these 
calculations automatically, transform the structures into standard 
forms that are the easiest to calculate, and automatically set the nec-
essary k-point grid densities, basis-set energy cuto!s and relaxation 
cycles with a convergence tolerance of the order of a few meV per 
atom44. It should also respond automatically to calculation failures, 
due to insu%cient hardware resources or runtime errors of the 
ab initio calculation itself. $ese are among the most di%cult chal-
lenges in HT database generation that have only recently been over-
come (ref. 44 gives details about how this automatic data generation 
is implemented in the AFLOW HT framework). $e initial search is 
performed on a set of known crystal structures, of all lattice types, 
spanning the entire composition range of the investigated systems3,9. 
In advanced HT studies this set includes hundreds of structures per 
system44. In subsequent steps, the search is o&en aided by data-min-
ing and optimization techniques that re#ne and accelerate the struc-
ture screening. $ey include a variety of di!erent approaches: for 

Table 1 | Examples of descriptors introduced in the literature.
Problem Combination of materials properties (gene) Descriptor
Structure stability: convex hull of an alloy 
system

Formation enthalpy (Hf) as a function of concentration (x) and the 
enthalpies (H) of A and B.

Hf(x) = H(A1−xBx) − (1−x)H(A)−xH(B)

Phase stability in off-lattice alloys Spectral decomposition of alloy vector-energies (En,p, n-rows = species, 
p-columns = configurations) with principal-component-analysis 
coefficients (αi) and truncation error ( (d)) (ref. 3).

En,p α1En,1  αp–1En,p–1 + (d)+ +

Nanosintered thermoelectrics Ratio of the average power factor (<P>) to the grain size (L) (ref. 15). thermo �ˆ χ <P>
L

Topological insulators (epitaxial growth) Variational ratio of spin–orbit distortion versus non-spin–orbit 
derivative strain (EkSOC , EknoSOC , spin/no spin–orbit bandgaps at 
k, a0 lattice)16.

Ek
Ek

TI � –ˆ χ
a0(a0)

(a)0

SOC

noSOC a0 a0

Power conversion efficiency of a solar cell 
(spectroscopic limited maximum efficiency)

Ratio of the maximum output power density (Pm) to the incident solar 
energy density (Pin) — a function (η) of the radiative electron–hole 
recombination current (fr) and the photon absorptivity (α(E)) — 
versus bandgap energy (Eg)62.

η(α(E),fr) = Pm/Pin; Eg

Non-proportionality in scintillators Maximum mismatch between effective masses of electrons (me) 
and holes (mh)75.

,
np � max ˆ χ ( (mh

me

me
mh

Morphotropic phase boundary 
piezoelectrics

Energy proximity between tetragonal, rhombohedra and rotational 
distortions (ΔEp). Angular coordinate (αAB) of the energy minimum in 
the A–B off-centerings energy map for ABO3 systems79.

∆Ep � 0.5 eV
αAB ≈ 45°
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High-throughput electronic structure calculations: Comp. Mat. Sci. 49, 299-312 (2010) 
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Algorithm has 25 self consistent points 
 
 
 
14 Bravais Lattices è 25 Brillouin Zones è 25 Bravais Definitions 
 
 
CUBIC: cub, bcc, fcc 
TETRAGONAL: tet, bct1, bct2 
ORTHORHOMBIC: orc, orcf1, orcf2, orcf2, orci, orcc 
HEXAGONAL/TRIGONAL: hex, rhl1, rhl2 
MONOCLINIC: mcl, mclc1, mclc2, mclc3, mclc4, mclc5 
TRICLINIC: tri1a, tri2a, tri1b, tri2b 

(a1,a2,a3)n+1
BL = Dual [MinkowskiBL� [Dual [(a1,a2,a3)n

BL]]]

ht-BZ	
 A	




.. after 25 cases  
and 1000 online headaches … 
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critical temperatures). In other words, the descriptor is the language 
with which the researcher speaks to the database, and thus the 
heart of any e!ective HT implementation. In Table 1 we illustrate 
examples of recently introduced descriptors.

Once a good descriptor is identi#ed, the search for better 
materials within the repository can be performed intrinsically or 
extrinsically, depending on whether the optimum solutions are 
already included in the set of calculations or not. Intrinsic searches 
include just step (iii), require only fast descriptors, and may employ 
various informatics techniques. Examples of previous such searches 
include the scanning of better cathode materials27,28, and the uncov-
ering of unknown compounds9,29,30, novel topological insulators16 or 
thermoelectric materials15. Extrinsic searches involve all three steps, 
because the search for an optimal solution includes iterations lead-
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An important component of extrinsic HT computational research 
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ing database entries to guide new calculations not yet included in 
the database. Examples of such schemes published in the literature 
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spectral decompositions3 and Bayesian probabilities10, re#nement 
and optimization by cluster expansion13,31 and structure map analy-
sis32–34. Neural networks35,36 and support vector machines37 have 
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be used to bypass step (iii) of the HT analysis, that is, the formula-
tion of a physically meaningful descriptor, so that a search can still 
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Areas of current application
Following the general framework outlined above, we describe in 
this section a few speci#c examples of computational HT studies 
reported in the literature, ordered by increasing degree of complexity. 

!ermodynamics for the identi"cation of binary and ternary 
compounds. $e identi#cation of stable structures is the #rst step 
in the design of materials with various speci#c functionalities. $e 
proper descriptor of alloy stability, the formation enthalpy, is the 
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Alloys are the workhorse material of many important techno-
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be transformative in some areas and would have a substantial 
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Table 1 | Examples of descriptors introduced in the literature.
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Graphene is a 2D form of carbon that is of current
interest !Novoselov et al., 2005; Zhang et al., 2005; Geim
and Novoselov, 2007; Castro Neto et al., 2009". What
makes graphene interesting electronically is the fact that
the conduction band and valence band touch each other
at two distinct points in the Brillouin zone. Near those
points the electronic dispersion resembles the linear dis-
persion of massless relativistic particles, described by the
Dirac equation !DiVincenzo and Mele, 1984; Semenoff,
1984". The simplest description of graphene employs a
two band model for the pz orbitals on the two equivalent
atoms in the unit cell of graphene’s honeycomb lattice.
The Bloch Hamiltonian is then a 2!2 matrix,

H!k" = h!k" · "! , !3"

where "! = !"x ,"y ,"z" are Pauli matrices and h!k"
= „hx!k" ,hy!k" ,0…. The combination of inversion !P" and
time-reversal !T" symmetry requires hz!k"=0 because P
takes hz!k" to −hz!−k", while T takes hz!k" to +hz!−k".
The Dirac points occur because the two components
h!k" can have point zeros in two dimensions. In
graphene they occur at two points, K and K!=−K,
whose locations at the Brillouin-zone corners are fixed
by graphene’s rotational symmetry. For small q#k−K,
h!q"=#vFq, where vF is a velocity, so H!q"=#vFq ·"! has
the form of a 2D massless Dirac Hamiltonian.

The degeneracy at the Dirac point is protected by P
and T symmetry. By breaking these symmetries the de-
generacy can be lifted. For instance, P symmetry is vio-
lated if the two atoms in the unit cell are inequivalent.
This allows hz!k" to be nonzero. If hz!k" is small, then
near K $Eq. !3"% becomes a massive Dirac Hamiltonian,

H!q" = #vFq · "! + m"z, !4"

where m=hz!K". The dispersion E!q"= ±&'#vFq'2+m2

has an energy gap 2'm'. Note that T symmetry requires
the Dirac point at K! to have a mass m!=hz!K!" with the
same magnitude and sign, m!=m. This state describes an
ordinary insulator.

Haldane !1988" imagined lifting the degeneracy by
breaking T symmetry with a magnetic field that is zero
on the average but has the full symmetry on the lattice.
This perturbation allows nonzero hz!k" and introduces a
mass to the Dirac points. However, P symmetry requires
the masses at K and K! to have opposite signs, m!=−m.
Haldane showed that this gapped state is not an insula-
tor but rather a quantum Hall state with "xy=e2 /h.

This nonzero Hall conductivity can be understood in
terms of Eq. !2". For a two level Hamiltonian of the
form of Eq. !3" it is well known that the Berry flux
!Berry, 1984" is related to the solid angle subtended by
the unit vector ĥ!k"=h!k" / 'h!k"', so that Eq. !2" takes
the form

n =
1

4$
( d2k!!kx

ĥ ! !ky
ĥ" · ĥ . !5"

This simply counts the number of times ĥ!k" wraps
around the unit sphere as a function of k. When the

masses m=m!=0, ĥ!k" is confined to the equator hz=0,
with a unit !and opposite" winding around each of the
Dirac points where 'h'=0. For small but finite m, 'h'
"0 everywhere, and ĥ!K" visits the north or south pole,
depending on the sign of m. It follows that each Dirac
point contributes ±e2 /2h to "xy. In the insulating state
with m=m! the two cancel, so "xy=0. In the quantum
Hall state they add.

It is essential that there were an even number of Dirac
points since otherwise the Hall conductivity would be
quantized to a half integer. This is in fact guaranteed by
the fermion doubling theorem !Nielssen and Ninomiya,
1983", which states that for a T invariant system Dirac
points must come in pairs. We return to this issue in Sec.
IV, where the surface of a topological insulator provides
a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classi-
fication of gapped band structures is the existence of
gapless conducting states at interfaces where the topo-
logical invariant changes. Such edge states are well
known at the interface between the integer quantum
Hall state and vacuum !Halperin, 1982". They may be
understood in terms of the skipping motion electrons
execute as their cyclotron orbits bounce off the edge
$Fig. 2!a"%. Importantly, the electronic states responsible
for this motion are chiral in the sense that they propa-
gate in one direction only along the edge. These states
are insensitive to disorder because there are no states
available for backscattering—a fact that underlies the
perfectly quantized electronic transport in the quantum
Hall effect.

The existence of such “one way” edge states is deeply
related to the topology of the bulk quantum Hall state.
Imagine an interface where a crystal slowly interpolates
as a function of distance y between a quantum Hall state
!n=1" and a trivial insulator !n=0". Somewhere along
the way the energy gap has to vanish because otherwise
it is impossible for the topological invariant to change.
There will therefore be low energy electronic states
bound to the region where the energy gap passes
through zero. This interplay between topology and gap-
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FIG. 2. !Color online" The interface between a quantum Hall
state and an insulator has chiral edge mode. !a" The skipping
cyclotron orbits. !b" The electronic structure of a semi-infinite
strip described by the Haldane model. A single edge state con-
nects the valence band to the conduction band.
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h!q"=#vFq, where vF is a velocity, so H!q"=#vFq ·"! has
the form of a 2D massless Dirac Hamiltonian.
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This allows hz!k" to be nonzero. If hz!k" is small, then
near K $Eq. !3"% becomes a massive Dirac Hamiltonian,
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where m=hz!K". The dispersion E!q"= ±&'#vFq'2+m2

has an energy gap 2'm'. Note that T symmetry requires
the Dirac point at K! to have a mass m!=hz!K!" with the
same magnitude and sign, m!=m. This state describes an
ordinary insulator.

Haldane !1988" imagined lifting the degeneracy by
breaking T symmetry with a magnetic field that is zero
on the average but has the full symmetry on the lattice.
This perturbation allows nonzero hz!k" and introduces a
mass to the Dirac points. However, P symmetry requires
the masses at K and K! to have opposite signs, m!=−m.
Haldane showed that this gapped state is not an insula-
tor but rather a quantum Hall state with "xy=e2 /h.

This nonzero Hall conductivity can be understood in
terms of Eq. !2". For a two level Hamiltonian of the
form of Eq. !3" it is well known that the Berry flux
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"0 everywhere, and ĥ!K" visits the north or south pole,
depending on the sign of m. It follows that each Dirac
point contributes ±e2 /2h to "xy. In the insulating state
with m=m! the two cancel, so "xy=0. In the quantum
Hall state they add.

It is essential that there were an even number of Dirac
points since otherwise the Hall conductivity would be
quantized to a half integer. This is in fact guaranteed by
the fermion doubling theorem !Nielssen and Ninomiya,
1983", which states that for a T invariant system Dirac
points must come in pairs. We return to this issue in Sec.
IV, where the surface of a topological insulator provides
a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classi-
fication of gapped band structures is the existence of
gapless conducting states at interfaces where the topo-
logical invariant changes. Such edge states are well
known at the interface between the integer quantum
Hall state and vacuum !Halperin, 1982". They may be
understood in terms of the skipping motion electrons
execute as their cyclotron orbits bounce off the edge
$Fig. 2!a"%. Importantly, the electronic states responsible
for this motion are chiral in the sense that they propa-
gate in one direction only along the edge. These states
are insensitive to disorder because there are no states
available for backscattering—a fact that underlies the
perfectly quantized electronic transport in the quantum
Hall effect.

The existence of such “one way” edge states is deeply
related to the topology of the bulk quantum Hall state.
Imagine an interface where a crystal slowly interpolates
as a function of distance y between a quantum Hall state
!n=1" and a trivial insulator !n=0". Somewhere along
the way the energy gap has to vanish because otherwise
it is impossible for the topological invariant to change.
There will therefore be low energy electronic states
bound to the region where the energy gap passes
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FIG. 2. !Color online" The interface between a quantum Hall
state and an insulator has chiral edge mode. !a" The skipping
cyclotron orbits. !b" The electronic structure of a semi-infinite
strip described by the Haldane model. A single edge state con-
nects the valence band to the conduction band.
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h!k" can have point zeros in two dimensions. In
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h!q"=#vFq, where vF is a velocity, so H!q"=#vFq ·"! has
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lated if the two atoms in the unit cell are inequivalent.
This allows hz!k" to be nonzero. If hz!k" is small, then
near K $Eq. !3"% becomes a massive Dirac Hamiltonian,
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where m=hz!K". The dispersion E!q"= ±&'#vFq'2+m2

has an energy gap 2'm'. Note that T symmetry requires
the Dirac point at K! to have a mass m!=hz!K!" with the
same magnitude and sign, m!=m. This state describes an
ordinary insulator.

Haldane !1988" imagined lifting the degeneracy by
breaking T symmetry with a magnetic field that is zero
on the average but has the full symmetry on the lattice.
This perturbation allows nonzero hz!k" and introduces a
mass to the Dirac points. However, P symmetry requires
the masses at K and K! to have opposite signs, m!=−m.
Haldane showed that this gapped state is not an insula-
tor but rather a quantum Hall state with "xy=e2 /h.
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with a unit !and opposite" winding around each of the
Dirac points where 'h'=0. For small but finite m, 'h'
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depending on the sign of m. It follows that each Dirac
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with m=m! the two cancel, so "xy=0. In the quantum
Hall state they add.

It is essential that there were an even number of Dirac
points since otherwise the Hall conductivity would be
quantized to a half integer. This is in fact guaranteed by
the fermion doubling theorem !Nielssen and Ninomiya,
1983", which states that for a T invariant system Dirac
points must come in pairs. We return to this issue in Sec.
IV, where the surface of a topological insulator provides
a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classi-
fication of gapped band structures is the existence of
gapless conducting states at interfaces where the topo-
logical invariant changes. Such edge states are well
known at the interface between the integer quantum
Hall state and vacuum !Halperin, 1982". They may be
understood in terms of the skipping motion electrons
execute as their cyclotron orbits bounce off the edge
$Fig. 2!a"%. Importantly, the electronic states responsible
for this motion are chiral in the sense that they propa-
gate in one direction only along the edge. These states
are insensitive to disorder because there are no states
available for backscattering—a fact that underlies the
perfectly quantized electronic transport in the quantum
Hall effect.

The existence of such “one way” edge states is deeply
related to the topology of the bulk quantum Hall state.
Imagine an interface where a crystal slowly interpolates
as a function of distance y between a quantum Hall state
!n=1" and a trivial insulator !n=0". Somewhere along
the way the energy gap has to vanish because otherwise
it is impossible for the topological invariant to change.
There will therefore be low energy electronic states
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FIG. 2. !Color online" The interface between a quantum Hall
state and an insulator has chiral edge mode. !a" The skipping
cyclotron orbits. !b" The electronic structure of a semi-infinite
strip described by the Haldane model. A single edge state con-
nects the valence band to the conduction band.
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The Dirac points occur because the two components
h!k" can have point zeros in two dimensions. In
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whose locations at the Brillouin-zone corners are fixed
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h!q"=#vFq, where vF is a velocity, so H!q"=#vFq ·"! has
the form of a 2D massless Dirac Hamiltonian.

The degeneracy at the Dirac point is protected by P
and T symmetry. By breaking these symmetries the de-
generacy can be lifted. For instance, P symmetry is vio-
lated if the two atoms in the unit cell are inequivalent.
This allows hz!k" to be nonzero. If hz!k" is small, then
near K $Eq. !3"% becomes a massive Dirac Hamiltonian,
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where m=hz!K". The dispersion E!q"= ±&'#vFq'2+m2

has an energy gap 2'm'. Note that T symmetry requires
the Dirac point at K! to have a mass m!=hz!K!" with the
same magnitude and sign, m!=m. This state describes an
ordinary insulator.

Haldane !1988" imagined lifting the degeneracy by
breaking T symmetry with a magnetic field that is zero
on the average but has the full symmetry on the lattice.
This perturbation allows nonzero hz!k" and introduces a
mass to the Dirac points. However, P symmetry requires
the masses at K and K! to have opposite signs, m!=−m.
Haldane showed that this gapped state is not an insula-
tor but rather a quantum Hall state with "xy=e2 /h.

This nonzero Hall conductivity can be understood in
terms of Eq. !2". For a two level Hamiltonian of the
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with a unit !and opposite" winding around each of the
Dirac points where 'h'=0. For small but finite m, 'h'
"0 everywhere, and ĥ!K" visits the north or south pole,
depending on the sign of m. It follows that each Dirac
point contributes ±e2 /2h to "xy. In the insulating state
with m=m! the two cancel, so "xy=0. In the quantum
Hall state they add.

It is essential that there were an even number of Dirac
points since otherwise the Hall conductivity would be
quantized to a half integer. This is in fact guaranteed by
the fermion doubling theorem !Nielssen and Ninomiya,
1983", which states that for a T invariant system Dirac
points must come in pairs. We return to this issue in Sec.
IV, where the surface of a topological insulator provides
a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classi-
fication of gapped band structures is the existence of
gapless conducting states at interfaces where the topo-
logical invariant changes. Such edge states are well
known at the interface between the integer quantum
Hall state and vacuum !Halperin, 1982". They may be
understood in terms of the skipping motion electrons
execute as their cyclotron orbits bounce off the edge
$Fig. 2!a"%. Importantly, the electronic states responsible
for this motion are chiral in the sense that they propa-
gate in one direction only along the edge. These states
are insensitive to disorder because there are no states
available for backscattering—a fact that underlies the
perfectly quantized electronic transport in the quantum
Hall effect.

The existence of such “one way” edge states is deeply
related to the topology of the bulk quantum Hall state.
Imagine an interface where a crystal slowly interpolates
as a function of distance y between a quantum Hall state
!n=1" and a trivial insulator !n=0". Somewhere along
the way the energy gap has to vanish because otherwise
it is impossible for the topological invariant to change.
There will therefore be low energy electronic states
bound to the region where the energy gap passes
through zero. This interplay between topology and gap-
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FIG. 2. !Color online" The interface between a quantum Hall
state and an insulator has chiral edge mode. !a" The skipping
cyclotron orbits. !b" The electronic structure of a semi-infinite
strip described by the Haldane model. A single edge state con-
nects the valence band to the conduction band.
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Graphene is a 2D form of carbon that is of current
interest !Novoselov et al., 2005; Zhang et al., 2005; Geim
and Novoselov, 2007; Castro Neto et al., 2009". What
makes graphene interesting electronically is the fact that
the conduction band and valence band touch each other
at two distinct points in the Brillouin zone. Near those
points the electronic dispersion resembles the linear dis-
persion of massless relativistic particles, described by the
Dirac equation !DiVincenzo and Mele, 1984; Semenoff,
1984". The simplest description of graphene employs a
two band model for the pz orbitals on the two equivalent
atoms in the unit cell of graphene’s honeycomb lattice.
The Bloch Hamiltonian is then a 2!2 matrix,

H!k" = h!k" · "! , !3"

where "! = !"x ,"y ,"z" are Pauli matrices and h!k"
= „hx!k" ,hy!k" ,0…. The combination of inversion !P" and
time-reversal !T" symmetry requires hz!k"=0 because P
takes hz!k" to −hz!−k", while T takes hz!k" to +hz!−k".
The Dirac points occur because the two components
h!k" can have point zeros in two dimensions. In
graphene they occur at two points, K and K!=−K,
whose locations at the Brillouin-zone corners are fixed
by graphene’s rotational symmetry. For small q#k−K,
h!q"=#vFq, where vF is a velocity, so H!q"=#vFq ·"! has
the form of a 2D massless Dirac Hamiltonian.

The degeneracy at the Dirac point is protected by P
and T symmetry. By breaking these symmetries the de-
generacy can be lifted. For instance, P symmetry is vio-
lated if the two atoms in the unit cell are inequivalent.
This allows hz!k" to be nonzero. If hz!k" is small, then
near K $Eq. !3"% becomes a massive Dirac Hamiltonian,

H!q" = #vFq · "! + m"z, !4"

where m=hz!K". The dispersion E!q"= ±&'#vFq'2+m2

has an energy gap 2'm'. Note that T symmetry requires
the Dirac point at K! to have a mass m!=hz!K!" with the
same magnitude and sign, m!=m. This state describes an
ordinary insulator.

Haldane !1988" imagined lifting the degeneracy by
breaking T symmetry with a magnetic field that is zero
on the average but has the full symmetry on the lattice.
This perturbation allows nonzero hz!k" and introduces a
mass to the Dirac points. However, P symmetry requires
the masses at K and K! to have opposite signs, m!=−m.
Haldane showed that this gapped state is not an insula-
tor but rather a quantum Hall state with "xy=e2 /h.

This nonzero Hall conductivity can be understood in
terms of Eq. !2". For a two level Hamiltonian of the
form of Eq. !3" it is well known that the Berry flux
!Berry, 1984" is related to the solid angle subtended by
the unit vector ĥ!k"=h!k" / 'h!k"', so that Eq. !2" takes
the form

n =
1

4$
( d2k!!kx

ĥ ! !ky
ĥ" · ĥ . !5"

This simply counts the number of times ĥ!k" wraps
around the unit sphere as a function of k. When the

masses m=m!=0, ĥ!k" is confined to the equator hz=0,
with a unit !and opposite" winding around each of the
Dirac points where 'h'=0. For small but finite m, 'h'
"0 everywhere, and ĥ!K" visits the north or south pole,
depending on the sign of m. It follows that each Dirac
point contributes ±e2 /2h to "xy. In the insulating state
with m=m! the two cancel, so "xy=0. In the quantum
Hall state they add.

It is essential that there were an even number of Dirac
points since otherwise the Hall conductivity would be
quantized to a half integer. This is in fact guaranteed by
the fermion doubling theorem !Nielssen and Ninomiya,
1983", which states that for a T invariant system Dirac
points must come in pairs. We return to this issue in Sec.
IV, where the surface of a topological insulator provides
a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classi-
fication of gapped band structures is the existence of
gapless conducting states at interfaces where the topo-
logical invariant changes. Such edge states are well
known at the interface between the integer quantum
Hall state and vacuum !Halperin, 1982". They may be
understood in terms of the skipping motion electrons
execute as their cyclotron orbits bounce off the edge
$Fig. 2!a"%. Importantly, the electronic states responsible
for this motion are chiral in the sense that they propa-
gate in one direction only along the edge. These states
are insensitive to disorder because there are no states
available for backscattering—a fact that underlies the
perfectly quantized electronic transport in the quantum
Hall effect.

The existence of such “one way” edge states is deeply
related to the topology of the bulk quantum Hall state.
Imagine an interface where a crystal slowly interpolates
as a function of distance y between a quantum Hall state
!n=1" and a trivial insulator !n=0". Somewhere along
the way the energy gap has to vanish because otherwise
it is impossible for the topological invariant to change.
There will therefore be low energy electronic states
bound to the region where the energy gap passes
through zero. This interplay between topology and gap-
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FIG. 2. !Color online" The interface between a quantum Hall
state and an insulator has chiral edge mode. !a" The skipping
cyclotron orbits. !b" The electronic structure of a semi-infinite
strip described by the Haldane model. A single edge state con-
nects the valence band to the conduction band.
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The Bloch Hamiltonian is then a 2!2 matrix,
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The Dirac points occur because the two components
h!k" can have point zeros in two dimensions. In
graphene they occur at two points, K and K!=−K,
whose locations at the Brillouin-zone corners are fixed
by graphene’s rotational symmetry. For small q#k−K,
h!q"=#vFq, where vF is a velocity, so H!q"=#vFq ·"! has
the form of a 2D massless Dirac Hamiltonian.

The degeneracy at the Dirac point is protected by P
and T symmetry. By breaking these symmetries the de-
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has an energy gap 2'm'. Note that T symmetry requires
the Dirac point at K! to have a mass m!=hz!K!" with the
same magnitude and sign, m!=m. This state describes an
ordinary insulator.

Haldane !1988" imagined lifting the degeneracy by
breaking T symmetry with a magnetic field that is zero
on the average but has the full symmetry on the lattice.
This perturbation allows nonzero hz!k" and introduces a
mass to the Dirac points. However, P symmetry requires
the masses at K and K! to have opposite signs, m!=−m.
Haldane showed that this gapped state is not an insula-
tor but rather a quantum Hall state with "xy=e2 /h.

This nonzero Hall conductivity can be understood in
terms of Eq. !2". For a two level Hamiltonian of the
form of Eq. !3" it is well known that the Berry flux
!Berry, 1984" is related to the solid angle subtended by
the unit vector ĥ!k"=h!k" / 'h!k"', so that Eq. !2" takes
the form
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This simply counts the number of times ĥ!k" wraps
around the unit sphere as a function of k. When the

masses m=m!=0, ĥ!k" is confined to the equator hz=0,
with a unit !and opposite" winding around each of the
Dirac points where 'h'=0. For small but finite m, 'h'
"0 everywhere, and ĥ!K" visits the north or south pole,
depending on the sign of m. It follows that each Dirac
point contributes ±e2 /2h to "xy. In the insulating state
with m=m! the two cancel, so "xy=0. In the quantum
Hall state they add.

It is essential that there were an even number of Dirac
points since otherwise the Hall conductivity would be
quantized to a half integer. This is in fact guaranteed by
the fermion doubling theorem !Nielssen and Ninomiya,
1983", which states that for a T invariant system Dirac
points must come in pairs. We return to this issue in Sec.
IV, where the surface of a topological insulator provides
a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classi-
fication of gapped band structures is the existence of
gapless conducting states at interfaces where the topo-
logical invariant changes. Such edge states are well
known at the interface between the integer quantum
Hall state and vacuum !Halperin, 1982". They may be
understood in terms of the skipping motion electrons
execute as their cyclotron orbits bounce off the edge
$Fig. 2!a"%. Importantly, the electronic states responsible
for this motion are chiral in the sense that they propa-
gate in one direction only along the edge. These states
are insensitive to disorder because there are no states
available for backscattering—a fact that underlies the
perfectly quantized electronic transport in the quantum
Hall effect.

The existence of such “one way” edge states is deeply
related to the topology of the bulk quantum Hall state.
Imagine an interface where a crystal slowly interpolates
as a function of distance y between a quantum Hall state
!n=1" and a trivial insulator !n=0". Somewhere along
the way the energy gap has to vanish because otherwise
it is impossible for the topological invariant to change.
There will therefore be low energy electronic states
bound to the region where the energy gap passes
through zero. This interplay between topology and gap-
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FIG. 2. !Color online" The interface between a quantum Hall
state and an insulator has chiral edge mode. !a" The skipping
cyclotron orbits. !b" The electronic structure of a semi-infinite
strip described by the Haldane model. A single edge state con-
nects the valence band to the conduction band.
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The TRP associated with !a can be expressed as !a !
"i!a1"i!a2, where [12]

 "i !
!!!!!!!!!!!!!!!!!!!!!!
det"w#"i$%

q
=Pf"w#"i$% ! &1: (1)

Here the unitary matrix wij#k$ ! hui#'k$j#juj#k$i. At
k ! "i, wij ! 'wji, so the Pfaffian Pf"w% is defined. !a

is free of the ambiguity of the square root in (1), provided
the square root is chosen continuously as a function of k.
However, !a is not gauge invariant. A k dependent gauge
transformation can change the sign of any pair of "i’s. This
reflects the physical fact that the end Kramers degeneracy
depends on how the crystal is terminated. It is similar to the
ambiguity of the charge polarization [12]. The product,
!1!2 ! "1"2"3"4, is gauge invariant, and characterizes
the change in TRP due to changing the flux from !1 ! 0 to
!2 ! !. This defines the single Z2 invariant in 2D, and
using the above argument, determines the connectivity of
the edge state spectrum.

In three dimensions there are 8 distinct TRIM, which are
expressed in terms of primitive reciprocal lattice vectors as
"i!#n1n2n3$ ! #n1b1 ( n2b2 ( n3b3$=2, with nj ! 0, 1.
They can be visualized as the vertices of a cube as in
Fig. 2. A gauge transformation can change the signs of "i
associated with any four "i that lie in the same plane.
Modulo these gauge transformations, there are 16 invariant
configurations of "i. These can be distinguished by 4 Z2
indices #0; (#1#2#3), which we define as

 #'1$#0 !
Y

nj!0;1

"n1n2n3 ; (2)

 #'1$#i!1;2;3 !
Y

nj!i!0;1;ni!1

"n1n2n3 : (3)

#0 is independent of the choice of bk. (#1#2#3) are not, but
they can be identified with G# ) P

i#ibi, which belongs to

the 8 element mod 2 reciprocal lattice, in which vectors
that differ by 2G are identified. (#1#2#3) can be interpreted
as Miller indices for G#.
#0–4 are equivalent to the four invariants introduced by

Moore and Balents [10] using general homotopy argu-
ments. The power of the present approach is that it allows
us to characterize the surface states on an arbitrary crystal
face. Generalizing the Laughlin argument to three dimen-
sions, consider a system with open ends in one direction
and periodic boundary conditions in the other two direc-
tions. This can be visualized as a torus with a finite thick-
ness (a ‘‘Corbino donut’’), which has an inside and an
outside surface. Viewed as a 1D system, we then seek to
classify the changes in the Kramers degeneracy associated
with the surfaces as a function of two fluxes threading the
torus (or equivalently as a function of the two components
of the surface crystal momentum).

For a surface perpendicular to G, the surface Brillouin
zone has four TRIM !a which are the projections of pairs
"a1, "a2, that differ by G=2, into the plane perpendicular to
G. Because of Kramers’ degeneracy, the surface spectrum
has two dimensional Dirac points at !a. The relative values
of !a ! "a1"a2 determine how these Dirac points are
connected to one another, as illustrated in Fig. 1. For any
path connecting !a to !b, the surface band structure will
resemble Fig. 1(a) and 1(b) for !a!b ! '1#(1$, and the
surface bands will intersect EF an odd (even) number of
times. It follows that the surface Fermi arc divides the
surface Brillouin zone into two regions. The Dirac points
at the TRIM !a with !a ! (1 are on one side, while those
with !a ! '1 are on the other side.

In Fig. 2 we depict "i for four different topological
classes, along with the predictions for the edge state spec-
trum for a 001 face. The surface Fermi arc encloses either
0(4), 1(3), or 2 Dirac points. When the number of Dirac
points is not 0(4), there must be surface states which
connect the bulk conduction and valence bands.

There are two classes of phases depending on the parity
of #0. For #0 ! 0 each face has either 0(4) or 2 enclosed
Dirac points. For a face G ! P

imibi there are 0(4) Dirac
points for mi ! #imod 2#i ! 1; 2; 3$ and 2 Dirac points
otherwise. These phases can be interpreted as layers of
2D QSH states stacked in the G# direction. They resemble
3D quantum Hall phases [14], which are indexed by a triad
of Chern integers that define a reciprocal lattice vector G
perpendicular to the layers and give the conductivity $ij !
#e2=h$"ijkGk=#2!$. In the present case, G# is defined
modulo 2G, so that layered QSH phases stacked along
G# and G# ( 2G are equivalent.

The presence or absence of surface states in the #0 ! 0
phases is delicate. For the 0;(001) phase in Fig. 2, the 100
face has two Dirac points, while the 801 face has 0(4). This
sensitivity is a symptom of the fact that the topological
distinction of these phases relies on the translational sym-
metry of the lattice. Indeed, if the unit cell is doubled, the
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FIG. 2. Diagrams depicting four different phases indexed by
#0; (#1#2#3). (a) depicts "i at the TRIM "i at the vertices of the
cube. (b) characterizes the 001 surface in each phase. The
surface TRIM !a are denoted by open (closed) circles for !a !
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specific !a.
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less modes is ubiquitous in physics and has appeared in
many contexts. It was originally found by Jackiw and
Rebbi !1976" in their analysis of a 1D field theory. Simi-
lar ideas were used by Su, Schrieffer, and Heeger !1979"
to describe soliton states in polyacetalene.

A simple theory of the chiral edge states based on
Jackiw and Rebbi !1976" can be developed using the two
band Dirac model !4". Consider an interface where the
mass m at one of the Dirac points changes sign as a
function of y. We thus let m→m!y", where m!y"!0
gives the insulator for y!0 and m!y""0 gives the quan-
tum Hall state for y"0. Assume m!!0 is fixed. The
Schrödinger equation, obtained by replacing q by −i!! in
Eq. !4", has a simple and elegant exact solution,

#qx
!x,y" $ eiqxx exp#− $

0

y

dy!m!y!"dy!/vF%#1
1
% , !6"

with E!qx"=%vFqx. This band of states intersects the
Fermi energy EF with a positive group velocity dE /dqx
=%vF and defines a right moving chiral edge mode.

In the 1980s related ideas were applied to narrow gap
semiconductors, which can be modeled using a 3D mas-
sive Dirac Hamiltonian !Volkov and Pankratov, 1985;
Fradkin, Dagotto, and Boyanovsky, 1986". An interface
where the Dirac mass changes sign is associated with
gapless 2D Dirac fermion states. These share some simi-
larities with the surface states of a 3D topological insu-
lator, but as we shall see in Sec. IV.A there is a funda-
mental difference. In a separate development, Kaplan
!1992" showed that in lattice quantum chromodynamics
four-dimensional !4D" chiral fermions could be simu-
lated on a five-dimensional lattice by introducing a simi-
lar domain wall. This provided a method for circumvent-
ing the doubling theorem !Nielssen and Ninomiya,
1983", which prevented the simulation of chiral fermions
on a 4D lattice. Quantum Hall edge states and surface
states of a topological insulator evade similar doubling
theorems.

The chiral edge states in the quantum Hall effect can
be seen explicitly by solving the Haldane model in a
semi-infinite geometry with an edge at y=0. Figure 2!b"
shows the energy levels as a function of the momentum
kx along the edge. The solid regions show the bulk con-
duction and valence bands, which form continuum states
and show the energy gap near K and K!. A single band,
describing states bound to the edge, connects the va-
lence band to the conduction band with a positive group
velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E!qx" could develop a kink so that the edge states inter-
sect EF three times—twice with a positive group velocity
and once with a negative group velocity. The difference,
NR−NL, between the number of right and left moving
modes, however, cannot change and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence,

NR − NL = &n , !7"

where &n is the difference in the Chern number across
the interface.

C. Z2 topological insulator

Since the Hall conductivity is odd under T, the topo-
logically nontrivial states described in Sec. II.B.3 can
only occur when T symmetry is broken. However, the
spin-orbit interaction allows a different topological class
of insulating band structures when T symmetry is unbro-
ken !Kane and Mele, 2005a". The key to understanding
this new topological class is to examine the role of T
symmetry for spin 1/2 particles.

T symmetry is represented by an antiunitary operator
'=exp!i(Sy /%"K, where Sy is the spin operator and K is
complex conjugation. For spin 1/2 electrons, ' has the
property '2=−1. This leads to an important constraint,
known as Kramers’ theorem, which all eigenstates of a T
invariant Hamiltonian are at least twofold degenerate.
This follows because if a nondegenerate state &)' existed
then '&)'=c&)' for some constant c. This would mean
'2&)'= &c&2&)', which is not allowed because &c&2
"−1. In the absence of spin-orbit interactions, Kramers’
degeneracy is simply the degeneracy between up and
down spins. In the presence of spin-orbit interactions,
however, it has nontrivial consequences.

A T invariant Bloch Hamiltonian must satisfy

'H!k"'−1 = H!− k" . !8"

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n=0, but there is an additional invariant with two pos-
sible values, *=0 or 1 !Kane and Mele, 2005b". The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.

In Fig. 3 we plot analogous to Fig. 2 the electronic
states associated with the edge of a T invariant 2D insu-
lator as a function of the crystal momentum along the
edge. Only half of the Brillouin zone 0"kx"( /a is
shown because T symmetry requires that the other half
−( /a"k"0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands
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FIG. 3. !Color online" Electronic dispersion between two
boundary Kramers degenerate points +a=0 and +b=( /a. In !a"
the number of surface states crossing the Fermi energy EF is
even, whereas in !b" it is odd. An odd number of crossings
leads to topologically protected metallic boundary states.
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will be transparent, while the 2D conductive network will still be capable of conducing elec-
tricity, by percolation. This is demonstrated in Fig. 2(g). Now the problem becomes finding
systems with spinodally separating insulating-phases and interfacial-metallic states.

B. Topological insulators as the spinodal phases

Topological insulators. Topological Insulators (TI) are becoming one of the most stud-
ied materials because of their great potential for applications ranging from spintronics to
quantum computers. To fully integrate TI materials in electronic devices, high-quality epi-
taxial single crystalline phases with su⇤ciently large bulk band-gaps are necessary. Current
e�orts have relied mostly on costly and time-consuming trial and error procedures.

The family of known TI materials has been growing steadily in the last few years48–52. Topo-
logically protected surface states have been experimentally identified in Bi2Te3

53,54 Bi2Se3
55,56

TlBiTe2
57, TlBiSe2

57–59, Bi2Te2Se60,61, Sb2Te2Se61, GeBi2Te4
61, PbBi2Te4

62 and PbBi4Te7
63,

and predicted in a variety of other systems64–70. In TIs, the mechanism of the protected
conducting surface states can be explained by invoking a model where a band inversion, BI,

FIG. 3: The birth of a conductive surface state. (a) In the bulk, the roto-translational invariance
and the maximum spin for half occupied orbitals, allows spin-orbit-coupling (SOC) to favorite p orbitals over
s, Ep < Es, causing band gap inversion. (b) When the symmetry is broken at an interface, the angular
momentum is not conserved, and the order of the orbitals recovers the usual trend: Ep > Es. (c) In a thin
film the surface becomes a virtual alloy of the two regions Ep < Es and Ep > Es leading to the closure of the
gap by Dirac cones48. If this happens at the TRIM points, the conductive cones become robust with respect
to moderate disorder. (d) The metallic state is localized in the surface, as shown by the wavefunction density
at the Fermi energy: we have a 2D metal � 3D insulator transition caused by symmetry loss. (e) A 3D BZ
(here shown for bct with TRIMs at N,X,�), and the corresponding 2D cones obtained by projecting the 3D
insulator onto (100), leading to cones at the point M of the 2D BZ (CsSnI3).
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•  Scan the aflowlib.org library 
•  Need of a DESCRIPTOR (need to grow… epixially). 
•  search for combination of heavy metals (potential strong spin-orbit coupling) 
•  search for ideal band structures with appropriate gaps 
•  calculate band structure with LS (thousand of compounds) 
•  calculate the bands for surfaces to see localized conducting surface stares 
•  usually they contain Bi and/or Sb,Te, Pb. 
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A search model for topological insulators with
high-throughput robustness descriptors
Kesong Yang1, Wahyu Setyawan2, ShidongWang1, Marco Buongiorno Nardelli3,4

and Stefano Curtarolo1,4,5*

Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for
applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality
epitaxial single crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on
costly and time-consuming trial and error procedures. Here we show that by defining a reliable and accessible descriptor �̂TI,
which represents the topological robustness or feasibility of the candidate, and by searching the quantummaterials repository
aflowlib.org, we have automatically discovered 28TIs (some of them already known) in five different symmetry families. These
include peculiar ternary halides, Cs{Sn,Pb,Ge}{Cl,Br,I}3, which could have been hardly anticipated without high-throughput
means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the
discovery of more TIs in different and unexplored classes of systems.

The family of known TI materials has been growing steadily1

in recent years1–5. Topologically protected surface states have2

been experimentally identified in Bi2Te3 (refs 6,7), Bi2Se33

(refs 8,9), TlBiTe2 (ref. 10), TlBiSe2 (refs 10–12), Bi2Te2Se (refs 13,4

14), Sb2Te2Se (ref. 14), GeBi2Te4 (ref. 14), PbBi2Te4 (ref. 15) and5

PbBi4Te7 (ref. 16), and predicted in a variety of other systems17–23. In6

topological insulators, the mechanism of the protected conducting7

surface states can be explained by invoking a model where a8

band inversion, BI, is induced by the spin–orbit-coupling (SOC).9

Such inversion must occur at the special time-reversal-invariant10

momentum (TRIM) points of the Brillouin zone5,24. SOC is11

responsible for the splitting of the p (d) bands into p3/2 (d5/2)12

and p1/2 (d3/2) in crystalline solids25. When the magnitude of13

the splitting is comparable to the energy difference between the14

conduction, Ecb, and the valence bands, Evb, (the bandgap, if the15

material has a direct gap), the character of the bands around the16

Fermi level might interchange: p ⌅ s (d ⌅ p; refs 5,24). If this17

happens at the TRIMpoints, then thematerial is a TI.18

To identify novel TIs withHigh-Throughput (HT) strategies one19

can proceed by (1) testing compounds containing heavy elements20

with expected high SOC (refs 17–22,26,27) and/or (2) identifying21

mechanical deformation that could reduce the band energy22

difference Ek ⇥ Ecb �Evb at the TRIM points so that even materials23

with relatively weaker SOCs could display a band inversion. Starting24

from the availability of the extensive ab initio electronic structure25

on-line repository aflowlib.org (refs 28–30) (one of the available26

materials genome databases), based on Inorganic Crystal Structure27

Databaseternational (ICSD) compounds31, we have extracted a28

subset of systems satisfying the conditions. Five families of TIs29

(including strong and weak TIs), for a total of⇤28 compounds, are30

then further characterized using electronic structure calculations31

based on density functional theory (DFT).32
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Laboratory, P.O. Box 999, Richland, Washington 99352, USA, 3Departments of Physics and Department of Chemistry, University of North Texas, Denton,
Texas 76203, USA, 4Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6367, USA, 5Department
of Physics, Duke University, Durham, North Carolina 27708, USA. *e-mail: stefano@duke.edu.

For searches based on HT frameworks, the construction of a 33

reliable and accessible ‘descriptor’ is crucial. We start by analysing 34

the ‘SOC-noSOC energy discrepancy’, ⇤Ek(a) ⇥ (ESOC
cb � ESOC

vb � 35

EnoSOC
cb + EnoSOC

vb )(k,a), the energy difference between SOC and 36

noSOCcalculations as a function of the cell dimensions a, calculated 37

at the k ⌃TRIM points (if the bandgap is direct, then ⇤Ek(a) is the 38

difference between SOC and noSOC bandgaps). Here, ⇤Ek differs 39

from the band-inversion strength defined in refs 17,18, where ⇤Ek 40

represented the energy difference between the ⇥6 and ⇥8 bands in 41

cubic lattices, equivalent to the energy gap in our work. ⇤Ek(a) is 42

tested in two systems: Bi2Te2S (k=⇥) andPbTe (k=N). In Fig. 1a,b 43

we show the energy differences (positive or negative32) and⇤Ek(a). 44

To resemble one possible configuration of epitaxial growth, such as 45

materials experiencing biaxial strain, we vary the coefficient a on the 46

plane while the other degrees of freedom are allowed to relax (c/a 47

and internal atom positions). 48

Green lines denote experimental lattice parameters, while blue 49

lines indicate the thresholds for band inversion at ⇥: when the 50

lattice parameter crosses the critical value, acrit, the SOCband energy 51

difference changes sign32. These findings confirm that Bi2Te2S 52

is indeed a TI and that PbTe becomes a TI with appropriate 53

strain. Knowing the values of ESOC
k (a0) and �ESOC

k (a)/�(a)|a0 one 54

can rapidly find the threshold acrit identifying the zero-difference 55

lattice parameter. However, the derivative �ESOC
k (a)/�(a)|a0 might 56

not be easily accessible within a HT framework, as it would 57

require a larger set of expensive SOC calculations, especially if 58

the criticality of the band inversion involves multi-dimensional 59

optimization. Fortunately, Fig. 1a,b also indicates that ⇤Ek(a) 60

varies much less than ESOC
k (a) and EnoSOC

k (a) over a wide range 61

of surface strain (most of the SOC effect comes from core 62

electrons, unaffected during bond strain). Therefore we can ap- 63

proximate �ESOC
k (a)/�(a)⇧ �ESOC

k (a)/�(a)|a0 ⇧ �EnoSOC
k (a)/�(a)|a0 . 64
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Figure 1 | Extraction of the high-throughput TI robustness descriptor from energy versus strain variations in SOC and noSOC calculations. SOC and
noSOC band energy differences, and SOC–noSOC energy discrepancy ⇧Ek as functions of the lattice parameter. a, Bi2Te2S at k= ⌅ and b, PbTe at k=N of
the bct2 BZ (refs 39,40) with biaxial strains along a and b (to reproduce epitaxial growth, all the other degrees of freedom are relaxed). The vertical green
line indicates the DFT relaxed geometry, a0, while the vertical blue line denotes the critical value, acrit, separating the TI and non-TI regions. For Bi2Te2S, the
bandgap is direct, so the band energy difference is the actual gap (Table 1). The arrows with ⇤̂TI indicate the strain to lose or achieve the TI condition in a or
b, respectively.

Consequently, we introduce the variational ‘high-throughput TI1

robustness descriptor’:2

⇤̂TI ⇥ � ESOC
k (a0)/a0

�EnoSOC
k (a)/�(a)

��
a0

(1)

3

Formally, the descriptor is defined as a ‘strain’ which represents4

either the robustness or the feasibility of the TI state. If the system5

is already a TI under equilibrium conditions (Fig. 1a) then ⇤̂TI6

represents the maximum biaxial strain applicable before the TI7

condition is lost. Thus, the value of ⇤̂TI can be associated with8

the robustness of the TI state on epitaxial growth conditions.9

Alternatively, if the system is not a TI under equilibrium con-10

ditions, but can be made so by applying a specific strain field11

(Fig. 1b), then ⇤̂TI represents the minimum biaxial strain applicable12

before the TI condition is reached. Thus, the value of ⇤̂TI can13

be associated with the feasibility of the TI state under epitaxial14

growth on an appropriate substrate. In the case where more15

than one TRIM exhibits band inversion, one needs to construct16

different HT robustness descriptor parameters ⇤̂TI and monitor the17

behaviour of the system. Clearly, 2D inequivalent TRIMs might18

exhibit different robustness or feasibility characteristics. These19

will dictate the choice of the proper substrate and/or cleavage20

plane that would indeed show the TI protected state.. By con-21

struction, ⇤̂TI can be rapidly estimated within a HT approach22

by using only three ab initio calculations: ESOC
k (a0), EnoSOC

k (a0),23

and EnoSOC
k (a0 + ⇥). The descriptor is built ad hoc to minimize24

the number of computationally expensive SOC calculations and25

to make effective use of the 15,000 + noSOC electronic struc-26

ture data already available in the aflowlib.org repository28,29. If27

we were including other phenomena, different surface strains,28

and/or more complex symmetries, then the descriptor (1) could be 29

rewritten within a tensorial formalism. Having the HT-descriptor, 30

the band inversion threshold can finally be estimated as acrit ⌅ 31

a0(1 + ⇤̂TI) (for a multi-dimensional HT-descriptor we would 32

have loci of criticality). 33

The values of ESOC
k (a0) and ⇤̂TI give indications on the feasibility 34

and robustness of the potential TI. On application of compressive 35

surface strain, the bandgap increases (Fig. 1a) or decreases (Fig. 1b). 36

The first case is typical of covalent systems (layered Bi2Te2S; refs 33, 37

34), whereas the second is common in ionic compounds (PbTe; 38

refs 35,36). Given these facts, the behaviour of �ESOC
k (a)/�(a)|a0 can 39

then be guessed a priori from the spread of the electronegativities 40

of the constituents (or better from the Mendeleev numbers37,38). 41

Finally, after characterizing ⇤̂TI as in equation (1), two scenarios 42

arise. (1) If ESOC
k (a0)⇤ 0, the system is already a TI and this state 43

should be preserved. Since the compound is intended to be grown 44

epitaxially, the applied strain (positive or negative) should not go 45

beyond ⇤̂TI, otherwise the fortunate TI condition disappears. The 46

larger the value of |⇤̂TI|, the more robust the TI is, with respect to 47

the choice of potential substrates. Thus |⇤̂TI| represents a legitimate 48

description of TI robustness. (2) If ESOC
k (a0)> 0, the system is not 49

a TI. The condition might be changed with the application of a 50

surface strain (positive or negative) larger than ⇤̂TI. If the strain is 51

physically achievable on the interface (|⇤̂TI| ⌅< 1 ⌅ 2%), then the 52

band inversion is enforced and the system becomes a TI. In this 53

second scenario, |⇤̂TI| can be considered as an appropriate measure 54

of the feasibility of the growth. 55

Equipped with the HT-descriptor (1), we have examined the 56

whole aflowlib.org repository28. We rapidly identify 28 novel 57

potential TIs. The compounds are divided into five classes according 58

to the prototypes and constituents. They are listed in Table 1, 59
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Figure 1 | Extraction of the high-throughput TI robustness descriptor from energy versus strain variations in SOC and noSOC calculations. SOC and
noSOC band energy differences, and SOC–noSOC energy discrepancy ⇧Ek as functions of the lattice parameter. a, Bi2Te2S at k= ⌅ and b, PbTe at k=N of
the bct2 BZ (refs 39,40) with biaxial strains along a and b (to reproduce epitaxial growth, all the other degrees of freedom are relaxed). The vertical green
line indicates the DFT relaxed geometry, a0, while the vertical blue line denotes the critical value, acrit, separating the TI and non-TI regions. For Bi2Te2S, the
bandgap is direct, so the band energy difference is the actual gap (Table 1). The arrows with ⇤̂TI indicate the strain to lose or achieve the TI condition in a or
b, respectively.
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is already a TI under equilibrium conditions (Fig. 1a) then ⇤̂TI6

represents the maximum biaxial strain applicable before the TI7

condition is lost. Thus, the value of ⇤̂TI can be associated with8

the robustness of the TI state on epitaxial growth conditions.9

Alternatively, if the system is not a TI under equilibrium con-10

ditions, but can be made so by applying a specific strain field11

(Fig. 1b), then ⇤̂TI represents the minimum biaxial strain applicable12

before the TI condition is reached. Thus, the value of ⇤̂TI can13

be associated with the feasibility of the TI state under epitaxial14

growth on an appropriate substrate. In the case where more15

than one TRIM exhibits band inversion, one needs to construct16

different HT robustness descriptor parameters ⇤̂TI and monitor the17

behaviour of the system. Clearly, 2D inequivalent TRIMs might18

exhibit different robustness or feasibility characteristics. These19

will dictate the choice of the proper substrate and/or cleavage20

plane that would indeed show the TI protected state.. By con-21

struction, ⇤̂TI can be rapidly estimated within a HT approach22

by using only three ab initio calculations: ESOC
k (a0), EnoSOC

k (a0),23

and EnoSOC
k (a0 + ⇥). The descriptor is built ad hoc to minimize24

the number of computationally expensive SOC calculations and25

to make effective use of the 15,000 + noSOC electronic struc-26

ture data already available in the aflowlib.org repository28,29. If27

we were including other phenomena, different surface strains,28

and/or more complex symmetries, then the descriptor (1) could be 29

rewritten within a tensorial formalism. Having the HT-descriptor, 30

the band inversion threshold can finally be estimated as acrit ⌅ 31

a0(1 + ⇤̂TI) (for a multi-dimensional HT-descriptor we would 32

have loci of criticality). 33

The values of ESOC
k (a0) and ⇤̂TI give indications on the feasibility 34

and robustness of the potential TI. On application of compressive 35

surface strain, the bandgap increases (Fig. 1a) or decreases (Fig. 1b). 36

The first case is typical of covalent systems (layered Bi2Te2S; refs 33, 37

34), whereas the second is common in ionic compounds (PbTe; 38

refs 35,36). Given these facts, the behaviour of �ESOC
k (a)/�(a)|a0 can 39

then be guessed a priori from the spread of the electronegativities 40

of the constituents (or better from the Mendeleev numbers37,38). 41

Finally, after characterizing ⇤̂TI as in equation (1), two scenarios 42

arise. (1) If ESOC
k (a0)⇤ 0, the system is already a TI and this state 43

should be preserved. Since the compound is intended to be grown 44

epitaxially, the applied strain (positive or negative) should not go 45

beyond ⇤̂TI, otherwise the fortunate TI condition disappears. The 46

larger the value of |⇤̂TI|, the more robust the TI is, with respect to 47

the choice of potential substrates. Thus |⇤̂TI| represents a legitimate 48

description of TI robustness. (2) If ESOC
k (a0)> 0, the system is not 49

a TI. The condition might be changed with the application of a 50

surface strain (positive or negative) larger than ⇤̂TI. If the strain is 51

physically achievable on the interface (|⇤̂TI| ⌅< 1 ⌅ 2%), then the 52

band inversion is enforced and the system becomes a TI. In this 53

second scenario, |⇤̂TI| can be considered as an appropriate measure 54

of the feasibility of the growth. 55

Equipped with the HT-descriptor (1), we have examined the 56

whole aflowlib.org repository28. We rapidly identify 28 novel 57

potential TIs. The compounds are divided into five classes according 58

to the prototypes and constituents. They are listed in Table 1, 59
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Figure 1 | Extraction of the high-throughput TI robustness descriptor from energy versus strain variations in SOC and noSOC calculations. SOC and
noSOC band energy differences, and SOC–noSOC energy discrepancy ⇧Ek as functions of the lattice parameter. a, Bi2Te2S at k= ⌅ and b, PbTe at k=N of
the bct2 BZ (refs 39,40) with biaxial strains along a and b (to reproduce epitaxial growth, all the other degrees of freedom are relaxed). The vertical green
line indicates the DFT relaxed geometry, a0, while the vertical blue line denotes the critical value, acrit, separating the TI and non-TI regions. For Bi2Te2S, the
bandgap is direct, so the band energy difference is the actual gap (Table 1). The arrows with ⇤̂TI indicate the strain to lose or achieve the TI condition in a or
b, respectively.
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condition is lost. Thus, the value of ⇤̂TI can be associated with8

the robustness of the TI state on epitaxial growth conditions.9
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(Fig. 1b), then ⇤̂TI represents the minimum biaxial strain applicable12

before the TI condition is reached. Thus, the value of ⇤̂TI can13
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than one TRIM exhibits band inversion, one needs to construct16

different HT robustness descriptor parameters ⇤̂TI and monitor the17

behaviour of the system. Clearly, 2D inequivalent TRIMs might18

exhibit different robustness or feasibility characteristics. These19

will dictate the choice of the proper substrate and/or cleavage20

plane that would indeed show the TI protected state.. By con-21

struction, ⇤̂TI can be rapidly estimated within a HT approach22
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k (a0 + ⇥). The descriptor is built ad hoc to minimize24
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to make effective use of the 15,000 + noSOC electronic struc-26

ture data already available in the aflowlib.org repository28,29. If27

we were including other phenomena, different surface strains,28

and/or more complex symmetries, then the descriptor (1) could be 29

rewritten within a tensorial formalism. Having the HT-descriptor, 30

the band inversion threshold can finally be estimated as acrit ⌅ 31

a0(1 + ⇤̂TI) (for a multi-dimensional HT-descriptor we would 32

have loci of criticality). 33

The values of ESOC
k (a0) and ⇤̂TI give indications on the feasibility 34

and robustness of the potential TI. On application of compressive 35

surface strain, the bandgap increases (Fig. 1a) or decreases (Fig. 1b). 36

The first case is typical of covalent systems (layered Bi2Te2S; refs 33, 37

34), whereas the second is common in ionic compounds (PbTe; 38

refs 35,36). Given these facts, the behaviour of �ESOC
k (a)/�(a)|a0 can 39

then be guessed a priori from the spread of the electronegativities 40

of the constituents (or better from the Mendeleev numbers37,38). 41

Finally, after characterizing ⇤̂TI as in equation (1), two scenarios 42

arise. (1) If ESOC
k (a0)⇤ 0, the system is already a TI and this state 43

should be preserved. Since the compound is intended to be grown 44

epitaxially, the applied strain (positive or negative) should not go 45

beyond ⇤̂TI, otherwise the fortunate TI condition disappears. The 46

larger the value of |⇤̂TI|, the more robust the TI is, with respect to 47

the choice of potential substrates. Thus |⇤̂TI| represents a legitimate 48

description of TI robustness. (2) If ESOC
k (a0)> 0, the system is not 49

a TI. The condition might be changed with the application of a 50

surface strain (positive or negative) larger than ⇤̂TI. If the strain is 51

physically achievable on the interface (|⇤̂TI| ⌅< 1 ⌅ 2%), then the 52

band inversion is enforced and the system becomes a TI. In this 53

second scenario, |⇤̂TI| can be considered as an appropriate measure 54

of the feasibility of the growth. 55

Equipped with the HT-descriptor (1), we have examined the 56

whole aflowlib.org repository28. We rapidly identify 28 novel 57

potential TIs. The compounds are divided into five classes according 58

to the prototypes and constituents. They are listed in Table 1, 59
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FIG. 2: Two dimensional surface electronic structure for selected compounds. Surface electronic band structures,
Brillouin zone and charge density. (a) Bi2Te2S, (b) GeBi2Te4, (c) PbBi4Te7, (d) CsSnI3 and (e) PbTe. (a’) Charge density
of Bi2Te2S projected on the conic bands forming the Dirac point. The conducting surface states mainly originate from the Te
and S atoms on the surface layer. (f) 3D-BZ of bct2 PbTe projected onto the 2D-BZ of the (001) surface. The 3D-N points
become the 2D locations of the cones.

band inversion (at � or Z). The third group of materials
has space group P3̄m1 (#164) with layered hexagonal
lattice. Like before, they are strong TIs (one band in-
version at A with multiplicity 1). The materials in the
fourth group are cubic with Pm3̄m space group (#221).
They are strong TIs having one band inversion at the A
point of the epitaxially distorted tet BZ (multiplicity 1)
[? ]. The fifth group of materials, PbS, PbSe, PbTe, and
SnTe, have fcc lattice and Fm3̄m space group (# 225).
They are weak TIs with a band inversion observed at the
N point of the distorted bct2 BZ (multiplicity 4) [? ].

if ESOC
k (a0) � 0, robustness:

|�̂TI|�1%⇥fragile,
1% < |�̂TI|�2%⇥robust,
2% < |�̂TI|⇥very-robust.

if ESOC
k (a0) > 0, feasibility:

|�̂TI|�3%⇥potentially-feasible,
3% < |�̂TI|⇥hardly-feasible.

To describe the protected surface states coming from
the projection of the 3D TRIMs onto the 2D surface Bril-
louin zone, we have characterized the surface band struc-
tures for five systems, one per class (Bi2Te2S, GeBi2Te4,
PbBi4Te7, CsSnI3, PbTe). They are shown in Figures
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Table 1 | Properties of bulk and simulated epitaxial structures.

Bulk Simulated epitaxial growth (a optimized, c/a free)

Compound Space ICSD # Pearson Latt. Exp. DFT Pearson Latt. acrit ESOCk Ref. ESOCg TRIM ⇥Ek @ ESOCk @ �̂TI

group ref. 31 symbol ref. 39 a0,c0 a0,c0 symbol cleav. (Å) ‘ref’ lattice ‘ref’ (mult.) (a0,c0) (a0,c0) (%)

Sb2Te2S R3̄m – hR5 rhl1 – 4.192 hR5 rhl1 1.006a0 �0.106 1.019a0 0.106 ⇥ (1) 0.21 0.043 0.6
31.001 (0001) 0.993c0 0.975c0 (D) PF

Sb2Te2Se R3̄m 2085 hR5 rhl1 4.188 4.244 hR5 rhl1 0.987a0 �0.079 a0 0.079 ⇥ (1) 0.21 �0.079 �1.3
⇥ 29.938 31.212 (0001) 1.017c0 c0 (D) R
Bi2Te2S R3̄m 617050 hR5 rhl1 4.33 4.297 hR5 rhl1 0.987a0 �0.089 a0 0.089 ⇥ (1) 0.62 �0.089 �1.3
Fig. 2a 30.07 31.513 (0001) 1.013c0 c0 (D) R
Bi2Te2Se R3̄m 43512 hR5 rhl1 4.282 4.347 hR5 rhl1 0.943a0 �0.302 a0 0.21 ⇥ (1) 0.63 �0.302 �5.7
⇥ 29.861 31.260 (0001) 1.061c0 c0 (I) VR

GeSb2Te4 R3̄m ref. 45 hR7 rhl1 4.21 4.295 hR7 rhl1 1.038a0 �0.036 1.051a0 0.033 Z(1) 0.30 0.170 3.8
40.6 42.295 (0001) 0.951c0 0.937c0 (I) HF

SnSb2Te4 R3̄m 30392 hR7 rhl1 4.312 4.389 hR7 rhl1 0.999a0 �0.065 1.011a0 0.065 Z(1) 0.22 0.013 �0.1
41.72 42.347 (0001) 0.998c0 0.984c0 (D) PF

PbSb2Te4 R3̄m 250250 hR7 rhl1 4.35 4.413 hR7 rhl1 0.988a0 �0.017 a0 0.017 Z(1) 0.35 �0.017 �1.2
41.712 42.792 (0001) 1.011c0 c0 (D) R

GeBi2Te4 R3̄m 30394 hR7 rhl1 4.282 4.390 hR7 rhl1 0.988a0 �0.076 a0 0.028 Z(1) 0.69 �0.076 �1.2
⇥ Fig. 2b 39.22 42.027 (0001) 1.009c0 c0 (I) R
SnBi2Te4 R3̄m ref. 46 hR7 rhl1 4.411 4.471 hR7 rhl1 0.939a0 �0.129 a0 0.062 Z(1) 0.65 �0.129 �6.1

41.511 42.799 (0001) 1.069c0 c0 (I) VR
PbBi2Te4 R3̄m ref. 47 hR7 rhl1 4.436 4.507 hR7 rhl1 0.914a0 �0.126 a0 0.061 Z(1) 0.74 �0.126 �8.6
⇥ 41.77 43.339 (0001) 1.077c0 c0 (I) VR
PbBi2Se4 R3̄m ref. 48 hR7 rhl1 4.16 4.250 hR7 rhl1 1.035a0 �0.079 1.052a0 0.035 Z(1) 0.41 0.314 5.2

39.2 41.755 (0001) 0.944c0 0.928c0 (I) HF

PbBi4Se7 P3̄m1 ref. 49 hP12 hex 4.25 4.216 hP12 hex 1.018a0 �0.016 1.023a0 0.016 A(1) 0.41 0.128 2.3
22.68 23.839 (0001) 0.971c0 0.966c0 (D) PF

GeBi4Te7 P3̄m1 42891 hP12 hex 4.36 4.412 hP12 hex 0.968a0 �0.037 a0 0.02 A(1) 0.69 �0.037 �3.2
24.11 23.932 (0001) 1.074c0 c0 (I) VR

SnBi4Te7 P3̄m1 ref. 50 hP12 hex 4.392 4.460 hP12 hex 0.926a0 �0.092 a0 0.014 A(1) 0.59 �0.092 �7.4
23.99 25.036 (0001) 1.085c0 c0 (I) VR

PbBi4Te7 P3̄m1 42707 hP12 hex 4.42 4.472 hP12 hex 0.959a0 �0.144 a0 0.085 A(1) 0.60 �0.144 �4.1
⇥ Fig. 2c 23.6 24.863 (0001) 1.063c0 c0 (I) VR
GeSb4Te7 P3̄m1 42875 hP12 hex 4.212 4.321 hP12 hex 0.986a0 �0.016 a0 0.016 A(1) 0.32 �0.016 �1.4

23.651 24.398 (0001) 1.012c0 c0 (D) R
SnSb4Te7 P3̄m1 ref. 51 hP12 hex 4.37 4.367 hP12 hex 0.982a0 �0.041 a0 0.041 A(1) 0.26 �0.041 �1.8

23.79 24.623 (0001) 1.019c0 c0 (D) R
PbSb4Te7 P3̄m1 ref. 52 hP12 hex 4.306 4.384 hP12 hex 0.972a0 �0.068 a0 0.068 A(1) 0.30 �0.068 �2.8

24.017 24.681 (0001) 1.033c0 c0 (D) R

CsSnCl3 Pm3̄m 28082 cP5 cub 5.504 5.618 tP5 tet 0.951a0 �0.281 0.936a0 0.111 A(1) 0.34 0.646 �4.9
5.504 5.618 (001) 1.022c0 1.209c0 (I) HF

CsPbCl3 Pm3̄m 29072 cP5 cub 5.605 5.733 tP5 tet 0.914a0 �0.450 0.890a0 0.354 A(1) 1.11 1.073 �8.6
5.605 5.733 (001) 1.037c0 1.050c0 (I) HF

CsGeBr3 Pm3̄m 80320 cP5 cub 5.36 5.603 tP5 tet 0.955a0 �0.055 0.952a0 0.026 A(1) 0.16 0.591 �4.5
5.36 5.603 (001) 1.022c0 1.023c0 (I) HF

CsSnBr3 Pm3̄m 4071 cP5 cub 5.795 5.884 tP5 tet 0.972a0 �0.099 0.965a0 0.099 A(1) 0.34 0.288 �2.8
5.795 5.884 (001) 1.010c0 1.013c0 (D) PF

CsPbBr3 Pm3̄m 29073 cP5 cub 5.874 5.993 tP5 tet 0.934a0 �0.120 0.926a0 0.120 A(1) 1.11 0.641 �6.6
5.874 5.993 (001) 1.024c0 1.027c0 ( D) HF

CsSnI3 Pm3̄m 69997 cP5 cub 6.219 6.272 tP5 tet 0.993a0 �0.335 0.960a0 0.169 A(1) 0.39 0.070 �0.7
Fig. 2d 6.219 6.272 (001) 1.002c0 1.013c0 (I) PF

PbS Fm3̄m 38293 cF8 fcc 4.196 4.248 tI4 bct2 0.986a0 �0.129 0.970a0 0.129 N (4) 0.37 0.099 �1.4
5.934 6.008 (001) 1.005c0 1.009c0 (D) PF

PbSe Fm3̄m 38294 cF8 fcc 4.333 4.388 tI4 bct2 1.003a0 �0.218 0.970a0 0.218 N (4) 0.41 �0.013 0.3
6.128 6.206 (001) 0.999c0 1.006c0 (D) F

PbTe Fm3̄m 38295 cF8 fcc 4.569 4.634 tI4 bct2 0.985a0 �0.520 0.96a0 0.086 N (4) 0.72 0.072 �1.5
Fig. 2e 6.462 6.554 (001) 1.001c0 1.004c0 (I) PF
SnTe Fm3̄m 52489 cF8 fcc 4.471 4.528 tI4 bct2 1.027a0 �0.058 1.010a0 0.058 N (4) 0.15 �0.107 2.7

6.323 6.404 (001) 0.998c0 0.999c0 (D) VR

Properties of bulk structure: compound (⇥ indicates experimental validation), space group, ICSD number31, Pearson symbol, Bravais lattice39, experimental and DFT equilibrium lattices a,c in (Å).
Properties under the simulated epitaxial growth condition: Pearson symbol, Bravais lattice with conventional cleavage Miller indices, critical value for band inversion (acrit), SOC band energy difference
(ESOCk (ref.)) at the TRIMwith the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) (ESOCg (ref.)), TRIMs having band inversion withmultiplicity39, SOC energy-gap
discrepancy (⇤Ek) at the ab initio equilibrium lattice, SOC band energy difference (ESOCk (a0)) at the TRIMwith the ab initio equilibrium lattice, HT-descriptor (�̂TI). The labels below �̂TI indicate: F(fragile),
R(robust), VR(very robust), PF(potentially feasible), and HF(hardly feasible) (structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).
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Table 1 | Properties of bulk and simulated epitaxial structures.

Bulk Simulated epitaxial growth (a optimized, c/a free)

Compound Space ICSD # Pearson Latt. Exp. DFT Pearson Latt. acrit ESOCk Ref. ESOCg TRIM ⇥Ek @ ESOCk @ �̂TI

group ref. 31 symbol ref. 39 a0,c0 a0,c0 symbol cleav. (Å) ‘ref’ lattice ‘ref’ (mult.) (a0,c0) (a0,c0) (%)

Sb2Te2S R3̄m – hR5 rhl1 – 4.192 hR5 rhl1 1.006a0 �0.106 1.019a0 0.106 ⇥ (1) 0.21 0.043 0.6
31.001 (0001) 0.993c0 0.975c0 (D) PF

Sb2Te2Se R3̄m 2085 hR5 rhl1 4.188 4.244 hR5 rhl1 0.987a0 �0.079 a0 0.079 ⇥ (1) 0.21 �0.079 �1.3
⇥ 29.938 31.212 (0001) 1.017c0 c0 (D) R
Bi2Te2S R3̄m 617050 hR5 rhl1 4.33 4.297 hR5 rhl1 0.987a0 �0.089 a0 0.089 ⇥ (1) 0.62 �0.089 �1.3
Fig. 2a 30.07 31.513 (0001) 1.013c0 c0 (D) R
Bi2Te2Se R3̄m 43512 hR5 rhl1 4.282 4.347 hR5 rhl1 0.943a0 �0.302 a0 0.21 ⇥ (1) 0.63 �0.302 �5.7
⇥ 29.861 31.260 (0001) 1.061c0 c0 (I) VR

GeSb2Te4 R3̄m ref. 45 hR7 rhl1 4.21 4.295 hR7 rhl1 1.038a0 �0.036 1.051a0 0.033 Z(1) 0.30 0.170 3.8
40.6 42.295 (0001) 0.951c0 0.937c0 (I) HF

SnSb2Te4 R3̄m 30392 hR7 rhl1 4.312 4.389 hR7 rhl1 0.999a0 �0.065 1.011a0 0.065 Z(1) 0.22 0.013 �0.1
41.72 42.347 (0001) 0.998c0 0.984c0 (D) PF

PbSb2Te4 R3̄m 250250 hR7 rhl1 4.35 4.413 hR7 rhl1 0.988a0 �0.017 a0 0.017 Z(1) 0.35 �0.017 �1.2
41.712 42.792 (0001) 1.011c0 c0 (D) R

GeBi2Te4 R3̄m 30394 hR7 rhl1 4.282 4.390 hR7 rhl1 0.988a0 �0.076 a0 0.028 Z(1) 0.69 �0.076 �1.2
⇥ Fig. 2b 39.22 42.027 (0001) 1.009c0 c0 (I) R
SnBi2Te4 R3̄m ref. 46 hR7 rhl1 4.411 4.471 hR7 rhl1 0.939a0 �0.129 a0 0.062 Z(1) 0.65 �0.129 �6.1

41.511 42.799 (0001) 1.069c0 c0 (I) VR
PbBi2Te4 R3̄m ref. 47 hR7 rhl1 4.436 4.507 hR7 rhl1 0.914a0 �0.126 a0 0.061 Z(1) 0.74 �0.126 �8.6
⇥ 41.77 43.339 (0001) 1.077c0 c0 (I) VR
PbBi2Se4 R3̄m ref. 48 hR7 rhl1 4.16 4.250 hR7 rhl1 1.035a0 �0.079 1.052a0 0.035 Z(1) 0.41 0.314 5.2

39.2 41.755 (0001) 0.944c0 0.928c0 (I) HF

PbBi4Se7 P3̄m1 ref. 49 hP12 hex 4.25 4.216 hP12 hex 1.018a0 �0.016 1.023a0 0.016 A(1) 0.41 0.128 2.3
22.68 23.839 (0001) 0.971c0 0.966c0 (D) PF

GeBi4Te7 P3̄m1 42891 hP12 hex 4.36 4.412 hP12 hex 0.968a0 �0.037 a0 0.02 A(1) 0.69 �0.037 �3.2
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PbBi4Te7 P3̄m1 42707 hP12 hex 4.42 4.472 hP12 hex 0.959a0 �0.144 a0 0.085 A(1) 0.60 �0.144 �4.1
⇥ Fig. 2c 23.6 24.863 (0001) 1.063c0 c0 (I) VR
GeSb4Te7 P3̄m1 42875 hP12 hex 4.212 4.321 hP12 hex 0.986a0 �0.016 a0 0.016 A(1) 0.32 �0.016 �1.4

23.651 24.398 (0001) 1.012c0 c0 (D) R
SnSb4Te7 P3̄m1 ref. 51 hP12 hex 4.37 4.367 hP12 hex 0.982a0 �0.041 a0 0.041 A(1) 0.26 �0.041 �1.8
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CsSnCl3 Pm3̄m 28082 cP5 cub 5.504 5.618 tP5 tet 0.951a0 �0.281 0.936a0 0.111 A(1) 0.34 0.646 �4.9
5.504 5.618 (001) 1.022c0 1.209c0 (I) HF

CsPbCl3 Pm3̄m 29072 cP5 cub 5.605 5.733 tP5 tet 0.914a0 �0.450 0.890a0 0.354 A(1) 1.11 1.073 �8.6
5.605 5.733 (001) 1.037c0 1.050c0 (I) HF

CsGeBr3 Pm3̄m 80320 cP5 cub 5.36 5.603 tP5 tet 0.955a0 �0.055 0.952a0 0.026 A(1) 0.16 0.591 �4.5
5.36 5.603 (001) 1.022c0 1.023c0 (I) HF

CsSnBr3 Pm3̄m 4071 cP5 cub 5.795 5.884 tP5 tet 0.972a0 �0.099 0.965a0 0.099 A(1) 0.34 0.288 �2.8
5.795 5.884 (001) 1.010c0 1.013c0 (D) PF

CsPbBr3 Pm3̄m 29073 cP5 cub 5.874 5.993 tP5 tet 0.934a0 �0.120 0.926a0 0.120 A(1) 1.11 0.641 �6.6
5.874 5.993 (001) 1.024c0 1.027c0 ( D) HF

CsSnI3 Pm3̄m 69997 cP5 cub 6.219 6.272 tP5 tet 0.993a0 �0.335 0.960a0 0.169 A(1) 0.39 0.070 �0.7
Fig. 2d 6.219 6.272 (001) 1.002c0 1.013c0 (I) PF

PbS Fm3̄m 38293 cF8 fcc 4.196 4.248 tI4 bct2 0.986a0 �0.129 0.970a0 0.129 N (4) 0.37 0.099 �1.4
5.934 6.008 (001) 1.005c0 1.009c0 (D) PF

PbSe Fm3̄m 38294 cF8 fcc 4.333 4.388 tI4 bct2 1.003a0 �0.218 0.970a0 0.218 N (4) 0.41 �0.013 0.3
6.128 6.206 (001) 0.999c0 1.006c0 (D) F

PbTe Fm3̄m 38295 cF8 fcc 4.569 4.634 tI4 bct2 0.985a0 �0.520 0.96a0 0.086 N (4) 0.72 0.072 �1.5
Fig. 2e 6.462 6.554 (001) 1.001c0 1.004c0 (I) PF
SnTe Fm3̄m 52489 cF8 fcc 4.471 4.528 tI4 bct2 1.027a0 �0.058 1.010a0 0.058 N (4) 0.15 �0.107 2.7

6.323 6.404 (001) 0.998c0 0.999c0 (D) VR

Properties of bulk structure: compound (⇥ indicates experimental validation), space group, ICSD number31, Pearson symbol, Bravais lattice39, experimental and DFT equilibrium lattices a,c in (Å).
Properties under the simulated epitaxial growth condition: Pearson symbol, Bravais lattice with conventional cleavage Miller indices, critical value for band inversion (acrit), SOC band energy difference
(ESOCk (ref.)) at the TRIMwith the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) (ESOCg (ref.)), TRIMs having band inversion withmultiplicity39, SOC energy-gap
discrepancy (⇤Ek) at the ab initio equilibrium lattice, SOC band energy difference (ESOCk (a0)) at the TRIMwith the ab initio equilibrium lattice, HT-descriptor (�̂TI). The labels below �̂TI indicate: F(fragile),
R(robust), VR(very robust), PF(potentially feasible), and HF(hardly feasible) (structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).
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Table 1 | Properties of bulk and simulated epitaxial structures.

Bulk Simulated epitaxial growth (a optimized, c/a free)

Compound Space ICSD # Pearson Latt. Exp. DFT Pearson Latt. acrit ESOCk Ref. ESOCg TRIM ⇥Ek @ ESOCk @ �̂TI

group ref. 31 symbol ref. 39 a0,c0 a0,c0 symbol cleav. (Å) ‘ref’ lattice ‘ref’ (mult.) (a0,c0) (a0,c0) (%)

Sb2Te2S R3̄m – hR5 rhl1 – 4.192 hR5 rhl1 1.006a0 �0.106 1.019a0 0.106 ⇥ (1) 0.21 0.043 0.6
31.001 (0001) 0.993c0 0.975c0 (D) PF

Sb2Te2Se R3̄m 2085 hR5 rhl1 4.188 4.244 hR5 rhl1 0.987a0 �0.079 a0 0.079 ⇥ (1) 0.21 �0.079 �1.3
⇥ 29.938 31.212 (0001) 1.017c0 c0 (D) R
Bi2Te2S R3̄m 617050 hR5 rhl1 4.33 4.297 hR5 rhl1 0.987a0 �0.089 a0 0.089 ⇥ (1) 0.62 �0.089 �1.3
Fig. 2a 30.07 31.513 (0001) 1.013c0 c0 (D) R
Bi2Te2Se R3̄m 43512 hR5 rhl1 4.282 4.347 hR5 rhl1 0.943a0 �0.302 a0 0.21 ⇥ (1) 0.63 �0.302 �5.7
⇥ 29.861 31.260 (0001) 1.061c0 c0 (I) VR

GeSb2Te4 R3̄m ref. 45 hR7 rhl1 4.21 4.295 hR7 rhl1 1.038a0 �0.036 1.051a0 0.033 Z(1) 0.30 0.170 3.8
40.6 42.295 (0001) 0.951c0 0.937c0 (I) HF

SnSb2Te4 R3̄m 30392 hR7 rhl1 4.312 4.389 hR7 rhl1 0.999a0 �0.065 1.011a0 0.065 Z(1) 0.22 0.013 �0.1
41.72 42.347 (0001) 0.998c0 0.984c0 (D) PF

PbSb2Te4 R3̄m 250250 hR7 rhl1 4.35 4.413 hR7 rhl1 0.988a0 �0.017 a0 0.017 Z(1) 0.35 �0.017 �1.2
41.712 42.792 (0001) 1.011c0 c0 (D) R

GeBi2Te4 R3̄m 30394 hR7 rhl1 4.282 4.390 hR7 rhl1 0.988a0 �0.076 a0 0.028 Z(1) 0.69 �0.076 �1.2
⇥ Fig. 2b 39.22 42.027 (0001) 1.009c0 c0 (I) R
SnBi2Te4 R3̄m ref. 46 hR7 rhl1 4.411 4.471 hR7 rhl1 0.939a0 �0.129 a0 0.062 Z(1) 0.65 �0.129 �6.1

41.511 42.799 (0001) 1.069c0 c0 (I) VR
PbBi2Te4 R3̄m ref. 47 hR7 rhl1 4.436 4.507 hR7 rhl1 0.914a0 �0.126 a0 0.061 Z(1) 0.74 �0.126 �8.6
⇥ 41.77 43.339 (0001) 1.077c0 c0 (I) VR
PbBi2Se4 R3̄m ref. 48 hR7 rhl1 4.16 4.250 hR7 rhl1 1.035a0 �0.079 1.052a0 0.035 Z(1) 0.41 0.314 5.2

39.2 41.755 (0001) 0.944c0 0.928c0 (I) HF

PbBi4Se7 P3̄m1 ref. 49 hP12 hex 4.25 4.216 hP12 hex 1.018a0 �0.016 1.023a0 0.016 A(1) 0.41 0.128 2.3
22.68 23.839 (0001) 0.971c0 0.966c0 (D) PF

GeBi4Te7 P3̄m1 42891 hP12 hex 4.36 4.412 hP12 hex 0.968a0 �0.037 a0 0.02 A(1) 0.69 �0.037 �3.2
24.11 23.932 (0001) 1.074c0 c0 (I) VR

SnBi4Te7 P3̄m1 ref. 50 hP12 hex 4.392 4.460 hP12 hex 0.926a0 �0.092 a0 0.014 A(1) 0.59 �0.092 �7.4
23.99 25.036 (0001) 1.085c0 c0 (I) VR

PbBi4Te7 P3̄m1 42707 hP12 hex 4.42 4.472 hP12 hex 0.959a0 �0.144 a0 0.085 A(1) 0.60 �0.144 �4.1
⇥ Fig. 2c 23.6 24.863 (0001) 1.063c0 c0 (I) VR
GeSb4Te7 P3̄m1 42875 hP12 hex 4.212 4.321 hP12 hex 0.986a0 �0.016 a0 0.016 A(1) 0.32 �0.016 �1.4

23.651 24.398 (0001) 1.012c0 c0 (D) R
SnSb4Te7 P3̄m1 ref. 51 hP12 hex 4.37 4.367 hP12 hex 0.982a0 �0.041 a0 0.041 A(1) 0.26 �0.041 �1.8

23.79 24.623 (0001) 1.019c0 c0 (D) R
PbSb4Te7 P3̄m1 ref. 52 hP12 hex 4.306 4.384 hP12 hex 0.972a0 �0.068 a0 0.068 A(1) 0.30 �0.068 �2.8

24.017 24.681 (0001) 1.033c0 c0 (D) R

CsSnCl3 Pm3̄m 28082 cP5 cub 5.504 5.618 tP5 tet 0.951a0 �0.281 0.936a0 0.111 A(1) 0.34 0.646 �4.9
5.504 5.618 (001) 1.022c0 1.209c0 (I) HF

CsPbCl3 Pm3̄m 29072 cP5 cub 5.605 5.733 tP5 tet 0.914a0 �0.450 0.890a0 0.354 A(1) 1.11 1.073 �8.6
5.605 5.733 (001) 1.037c0 1.050c0 (I) HF

CsGeBr3 Pm3̄m 80320 cP5 cub 5.36 5.603 tP5 tet 0.955a0 �0.055 0.952a0 0.026 A(1) 0.16 0.591 �4.5
5.36 5.603 (001) 1.022c0 1.023c0 (I) HF

CsSnBr3 Pm3̄m 4071 cP5 cub 5.795 5.884 tP5 tet 0.972a0 �0.099 0.965a0 0.099 A(1) 0.34 0.288 �2.8
5.795 5.884 (001) 1.010c0 1.013c0 (D) PF

CsPbBr3 Pm3̄m 29073 cP5 cub 5.874 5.993 tP5 tet 0.934a0 �0.120 0.926a0 0.120 A(1) 1.11 0.641 �6.6
5.874 5.993 (001) 1.024c0 1.027c0 ( D) HF

CsSnI3 Pm3̄m 69997 cP5 cub 6.219 6.272 tP5 tet 0.993a0 �0.335 0.960a0 0.169 A(1) 0.39 0.070 �0.7
Fig. 2d 6.219 6.272 (001) 1.002c0 1.013c0 (I) PF

PbS Fm3̄m 38293 cF8 fcc 4.196 4.248 tI4 bct2 0.986a0 �0.129 0.970a0 0.129 N (4) 0.37 0.099 �1.4
5.934 6.008 (001) 1.005c0 1.009c0 (D) PF

PbSe Fm3̄m 38294 cF8 fcc 4.333 4.388 tI4 bct2 1.003a0 �0.218 0.970a0 0.218 N (4) 0.41 �0.013 0.3
6.128 6.206 (001) 0.999c0 1.006c0 (D) F

PbTe Fm3̄m 38295 cF8 fcc 4.569 4.634 tI4 bct2 0.985a0 �0.520 0.96a0 0.086 N (4) 0.72 0.072 �1.5
Fig. 2e 6.462 6.554 (001) 1.001c0 1.004c0 (I) PF
SnTe Fm3̄m 52489 cF8 fcc 4.471 4.528 tI4 bct2 1.027a0 �0.058 1.010a0 0.058 N (4) 0.15 �0.107 2.7

6.323 6.404 (001) 0.998c0 0.999c0 (D) VR

Properties of bulk structure: compound (⇥ indicates experimental validation), space group, ICSD number31, Pearson symbol, Bravais lattice39, experimental and DFT equilibrium lattices a,c in (Å).
Properties under the simulated epitaxial growth condition: Pearson symbol, Bravais lattice with conventional cleavage Miller indices, critical value for band inversion (acrit), SOC band energy difference
(ESOCk (ref.)) at the TRIMwith the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) (ESOCg (ref.)), TRIMs having band inversion withmultiplicity39, SOC energy-gap
discrepancy (⇤Ek) at the ab initio equilibrium lattice, SOC band energy difference (ESOCk (a0)) at the TRIMwith the ab initio equilibrium lattice, HT-descriptor (�̂TI). The labels below �̂TI indicate: F(fragile),
R(robust), VR(very robust), PF(potentially feasible), and HF(hardly feasible) (structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).
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Table 1 | Properties of bulk and simulated epitaxial structures.

Bulk Simulated epitaxial growth (a optimized, c/a free)

Compound Space ICSD # Pearson Latt. Exp. DFT Pearson Latt. acrit ESOCk Ref. ESOCg TRIM ⇥Ek @ ESOCk @ �̂TI

group ref. 31 symbol ref. 39 a0,c0 a0,c0 symbol cleav. (Å) ‘ref’ lattice ‘ref’ (mult.) (a0,c0) (a0,c0) (%)

Sb2Te2S R3̄m – hR5 rhl1 – 4.192 hR5 rhl1 1.006a0 �0.106 1.019a0 0.106 ⇥ (1) 0.21 0.043 0.6
31.001 (0001) 0.993c0 0.975c0 (D) PF

Sb2Te2Se R3̄m 2085 hR5 rhl1 4.188 4.244 hR5 rhl1 0.987a0 �0.079 a0 0.079 ⇥ (1) 0.21 �0.079 �1.3
⇥ 29.938 31.212 (0001) 1.017c0 c0 (D) R
Bi2Te2S R3̄m 617050 hR5 rhl1 4.33 4.297 hR5 rhl1 0.987a0 �0.089 a0 0.089 ⇥ (1) 0.62 �0.089 �1.3
Fig. 2a 30.07 31.513 (0001) 1.013c0 c0 (D) R
Bi2Te2Se R3̄m 43512 hR5 rhl1 4.282 4.347 hR5 rhl1 0.943a0 �0.302 a0 0.21 ⇥ (1) 0.63 �0.302 �5.7
⇥ 29.861 31.260 (0001) 1.061c0 c0 (I) VR

GeSb2Te4 R3̄m ref. 45 hR7 rhl1 4.21 4.295 hR7 rhl1 1.038a0 �0.036 1.051a0 0.033 Z(1) 0.30 0.170 3.8
40.6 42.295 (0001) 0.951c0 0.937c0 (I) HF

SnSb2Te4 R3̄m 30392 hR7 rhl1 4.312 4.389 hR7 rhl1 0.999a0 �0.065 1.011a0 0.065 Z(1) 0.22 0.013 �0.1
41.72 42.347 (0001) 0.998c0 0.984c0 (D) PF

PbSb2Te4 R3̄m 250250 hR7 rhl1 4.35 4.413 hR7 rhl1 0.988a0 �0.017 a0 0.017 Z(1) 0.35 �0.017 �1.2
41.712 42.792 (0001) 1.011c0 c0 (D) R

GeBi2Te4 R3̄m 30394 hR7 rhl1 4.282 4.390 hR7 rhl1 0.988a0 �0.076 a0 0.028 Z(1) 0.69 �0.076 �1.2
⇥ Fig. 2b 39.22 42.027 (0001) 1.009c0 c0 (I) R
SnBi2Te4 R3̄m ref. 46 hR7 rhl1 4.411 4.471 hR7 rhl1 0.939a0 �0.129 a0 0.062 Z(1) 0.65 �0.129 �6.1

41.511 42.799 (0001) 1.069c0 c0 (I) VR
PbBi2Te4 R3̄m ref. 47 hR7 rhl1 4.436 4.507 hR7 rhl1 0.914a0 �0.126 a0 0.061 Z(1) 0.74 �0.126 �8.6
⇥ 41.77 43.339 (0001) 1.077c0 c0 (I) VR
PbBi2Se4 R3̄m ref. 48 hR7 rhl1 4.16 4.250 hR7 rhl1 1.035a0 �0.079 1.052a0 0.035 Z(1) 0.41 0.314 5.2

39.2 41.755 (0001) 0.944c0 0.928c0 (I) HF

PbBi4Se7 P3̄m1 ref. 49 hP12 hex 4.25 4.216 hP12 hex 1.018a0 �0.016 1.023a0 0.016 A(1) 0.41 0.128 2.3
22.68 23.839 (0001) 0.971c0 0.966c0 (D) PF

GeBi4Te7 P3̄m1 42891 hP12 hex 4.36 4.412 hP12 hex 0.968a0 �0.037 a0 0.02 A(1) 0.69 �0.037 �3.2
24.11 23.932 (0001) 1.074c0 c0 (I) VR

SnBi4Te7 P3̄m1 ref. 50 hP12 hex 4.392 4.460 hP12 hex 0.926a0 �0.092 a0 0.014 A(1) 0.59 �0.092 �7.4
23.99 25.036 (0001) 1.085c0 c0 (I) VR

PbBi4Te7 P3̄m1 42707 hP12 hex 4.42 4.472 hP12 hex 0.959a0 �0.144 a0 0.085 A(1) 0.60 �0.144 �4.1
⇥ Fig. 2c 23.6 24.863 (0001) 1.063c0 c0 (I) VR
GeSb4Te7 P3̄m1 42875 hP12 hex 4.212 4.321 hP12 hex 0.986a0 �0.016 a0 0.016 A(1) 0.32 �0.016 �1.4

23.651 24.398 (0001) 1.012c0 c0 (D) R
SnSb4Te7 P3̄m1 ref. 51 hP12 hex 4.37 4.367 hP12 hex 0.982a0 �0.041 a0 0.041 A(1) 0.26 �0.041 �1.8

23.79 24.623 (0001) 1.019c0 c0 (D) R
PbSb4Te7 P3̄m1 ref. 52 hP12 hex 4.306 4.384 hP12 hex 0.972a0 �0.068 a0 0.068 A(1) 0.30 �0.068 �2.8

24.017 24.681 (0001) 1.033c0 c0 (D) R

CsSnCl3 Pm3̄m 28082 cP5 cub 5.504 5.618 tP5 tet 0.951a0 �0.281 0.936a0 0.111 A(1) 0.34 0.646 �4.9
5.504 5.618 (001) 1.022c0 1.209c0 (I) HF

CsPbCl3 Pm3̄m 29072 cP5 cub 5.605 5.733 tP5 tet 0.914a0 �0.450 0.890a0 0.354 A(1) 1.11 1.073 �8.6
5.605 5.733 (001) 1.037c0 1.050c0 (I) HF

CsGeBr3 Pm3̄m 80320 cP5 cub 5.36 5.603 tP5 tet 0.955a0 �0.055 0.952a0 0.026 A(1) 0.16 0.591 �4.5
5.36 5.603 (001) 1.022c0 1.023c0 (I) HF

CsSnBr3 Pm3̄m 4071 cP5 cub 5.795 5.884 tP5 tet 0.972a0 �0.099 0.965a0 0.099 A(1) 0.34 0.288 �2.8
5.795 5.884 (001) 1.010c0 1.013c0 (D) PF

CsPbBr3 Pm3̄m 29073 cP5 cub 5.874 5.993 tP5 tet 0.934a0 �0.120 0.926a0 0.120 A(1) 1.11 0.641 �6.6
5.874 5.993 (001) 1.024c0 1.027c0 ( D) HF

CsSnI3 Pm3̄m 69997 cP5 cub 6.219 6.272 tP5 tet 0.993a0 �0.335 0.960a0 0.169 A(1) 0.39 0.070 �0.7
Fig. 2d 6.219 6.272 (001) 1.002c0 1.013c0 (I) PF

PbS Fm3̄m 38293 cF8 fcc 4.196 4.248 tI4 bct2 0.986a0 �0.129 0.970a0 0.129 N (4) 0.37 0.099 �1.4
5.934 6.008 (001) 1.005c0 1.009c0 (D) PF

PbSe Fm3̄m 38294 cF8 fcc 4.333 4.388 tI4 bct2 1.003a0 �0.218 0.970a0 0.218 N (4) 0.41 �0.013 0.3
6.128 6.206 (001) 0.999c0 1.006c0 (D) F

PbTe Fm3̄m 38295 cF8 fcc 4.569 4.634 tI4 bct2 0.985a0 �0.520 0.96a0 0.086 N (4) 0.72 0.072 �1.5
Fig. 2e 6.462 6.554 (001) 1.001c0 1.004c0 (I) PF
SnTe Fm3̄m 52489 cF8 fcc 4.471 4.528 tI4 bct2 1.027a0 �0.058 1.010a0 0.058 N (4) 0.15 �0.107 2.7

6.323 6.404 (001) 0.998c0 0.999c0 (D) VR

Properties of bulk structure: compound (⇥ indicates experimental validation), space group, ICSD number31, Pearson symbol, Bravais lattice39, experimental and DFT equilibrium lattices a,c in (Å).
Properties under the simulated epitaxial growth condition: Pearson symbol, Bravais lattice with conventional cleavage Miller indices, critical value for band inversion (acrit), SOC band energy difference
(ESOCk (ref.)) at the TRIMwith the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) (ESOCg (ref.)), TRIMs having band inversion withmultiplicity39, SOC energy-gap
discrepancy (⇤Ek) at the ab initio equilibrium lattice, SOC band energy difference (ESOCk (a0)) at the TRIMwith the ab initio equilibrium lattice, HT-descriptor (�̂TI). The labels below �̂TI indicate: F(fragile),
R(robust), VR(very robust), PF(potentially feasible), and HF(hardly feasible) (structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).
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Table 1 | Properties of bulk and simulated epitaxial structures.

Bulk Simulated epitaxial growth (a optimized, c/a free)

Compound Space ICSD # Pearson Latt. Exp. DFT Pearson Latt. acrit ESOCk Ref. ESOCg TRIM ⇥Ek @ ESOCk @ �̂TI

group ref. 31 symbol ref. 39 a0,c0 a0,c0 symbol cleav. (Å) ‘ref’ lattice ‘ref’ (mult.) (a0,c0) (a0,c0) (%)
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31.001 (0001) 0.993c0 0.975c0 (D) PF
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⇥ 29.938 31.212 (0001) 1.017c0 c0 (D) R
Bi2Te2S R3̄m 617050 hR5 rhl1 4.33 4.297 hR5 rhl1 0.987a0 �0.089 a0 0.089 ⇥ (1) 0.62 �0.089 �1.3
Fig. 2a 30.07 31.513 (0001) 1.013c0 c0 (D) R
Bi2Te2Se R3̄m 43512 hR5 rhl1 4.282 4.347 hR5 rhl1 0.943a0 �0.302 a0 0.21 ⇥ (1) 0.63 �0.302 �5.7
⇥ 29.861 31.260 (0001) 1.061c0 c0 (I) VR

GeSb2Te4 R3̄m ref. 45 hR7 rhl1 4.21 4.295 hR7 rhl1 1.038a0 �0.036 1.051a0 0.033 Z(1) 0.30 0.170 3.8
40.6 42.295 (0001) 0.951c0 0.937c0 (I) HF

SnSb2Te4 R3̄m 30392 hR7 rhl1 4.312 4.389 hR7 rhl1 0.999a0 �0.065 1.011a0 0.065 Z(1) 0.22 0.013 �0.1
41.72 42.347 (0001) 0.998c0 0.984c0 (D) PF

PbSb2Te4 R3̄m 250250 hR7 rhl1 4.35 4.413 hR7 rhl1 0.988a0 �0.017 a0 0.017 Z(1) 0.35 �0.017 �1.2
41.712 42.792 (0001) 1.011c0 c0 (D) R

GeBi2Te4 R3̄m 30394 hR7 rhl1 4.282 4.390 hR7 rhl1 0.988a0 �0.076 a0 0.028 Z(1) 0.69 �0.076 �1.2
⇥ Fig. 2b 39.22 42.027 (0001) 1.009c0 c0 (I) R
SnBi2Te4 R3̄m ref. 46 hR7 rhl1 4.411 4.471 hR7 rhl1 0.939a0 �0.129 a0 0.062 Z(1) 0.65 �0.129 �6.1

41.511 42.799 (0001) 1.069c0 c0 (I) VR
PbBi2Te4 R3̄m ref. 47 hR7 rhl1 4.436 4.507 hR7 rhl1 0.914a0 �0.126 a0 0.061 Z(1) 0.74 �0.126 �8.6
⇥ 41.77 43.339 (0001) 1.077c0 c0 (I) VR
PbBi2Se4 R3̄m ref. 48 hR7 rhl1 4.16 4.250 hR7 rhl1 1.035a0 �0.079 1.052a0 0.035 Z(1) 0.41 0.314 5.2

39.2 41.755 (0001) 0.944c0 0.928c0 (I) HF

PbBi4Se7 P3̄m1 ref. 49 hP12 hex 4.25 4.216 hP12 hex 1.018a0 �0.016 1.023a0 0.016 A(1) 0.41 0.128 2.3
22.68 23.839 (0001) 0.971c0 0.966c0 (D) PF

GeBi4Te7 P3̄m1 42891 hP12 hex 4.36 4.412 hP12 hex 0.968a0 �0.037 a0 0.02 A(1) 0.69 �0.037 �3.2
24.11 23.932 (0001) 1.074c0 c0 (I) VR

SnBi4Te7 P3̄m1 ref. 50 hP12 hex 4.392 4.460 hP12 hex 0.926a0 �0.092 a0 0.014 A(1) 0.59 �0.092 �7.4
23.99 25.036 (0001) 1.085c0 c0 (I) VR

PbBi4Te7 P3̄m1 42707 hP12 hex 4.42 4.472 hP12 hex 0.959a0 �0.144 a0 0.085 A(1) 0.60 �0.144 �4.1
⇥ Fig. 2c 23.6 24.863 (0001) 1.063c0 c0 (I) VR
GeSb4Te7 P3̄m1 42875 hP12 hex 4.212 4.321 hP12 hex 0.986a0 �0.016 a0 0.016 A(1) 0.32 �0.016 �1.4

23.651 24.398 (0001) 1.012c0 c0 (D) R
SnSb4Te7 P3̄m1 ref. 51 hP12 hex 4.37 4.367 hP12 hex 0.982a0 �0.041 a0 0.041 A(1) 0.26 �0.041 �1.8

23.79 24.623 (0001) 1.019c0 c0 (D) R
PbSb4Te7 P3̄m1 ref. 52 hP12 hex 4.306 4.384 hP12 hex 0.972a0 �0.068 a0 0.068 A(1) 0.30 �0.068 �2.8

24.017 24.681 (0001) 1.033c0 c0 (D) R

CsSnCl3 Pm3̄m 28082 cP5 cub 5.504 5.618 tP5 tet 0.951a0 �0.281 0.936a0 0.111 A(1) 0.34 0.646 �4.9
5.504 5.618 (001) 1.022c0 1.209c0 (I) HF

CsPbCl3 Pm3̄m 29072 cP5 cub 5.605 5.733 tP5 tet 0.914a0 �0.450 0.890a0 0.354 A(1) 1.11 1.073 �8.6
5.605 5.733 (001) 1.037c0 1.050c0 (I) HF

CsGeBr3 Pm3̄m 80320 cP5 cub 5.36 5.603 tP5 tet 0.955a0 �0.055 0.952a0 0.026 A(1) 0.16 0.591 �4.5
5.36 5.603 (001) 1.022c0 1.023c0 (I) HF

CsSnBr3 Pm3̄m 4071 cP5 cub 5.795 5.884 tP5 tet 0.972a0 �0.099 0.965a0 0.099 A(1) 0.34 0.288 �2.8
5.795 5.884 (001) 1.010c0 1.013c0 (D) PF

CsPbBr3 Pm3̄m 29073 cP5 cub 5.874 5.993 tP5 tet 0.934a0 �0.120 0.926a0 0.120 A(1) 1.11 0.641 �6.6
5.874 5.993 (001) 1.024c0 1.027c0 ( D) HF

CsSnI3 Pm3̄m 69997 cP5 cub 6.219 6.272 tP5 tet 0.993a0 �0.335 0.960a0 0.169 A(1) 0.39 0.070 �0.7
Fig. 2d 6.219 6.272 (001) 1.002c0 1.013c0 (I) PF

PbS Fm3̄m 38293 cF8 fcc 4.196 4.248 tI4 bct2 0.986a0 �0.129 0.970a0 0.129 N (4) 0.37 0.099 �1.4
5.934 6.008 (001) 1.005c0 1.009c0 (D) PF

PbSe Fm3̄m 38294 cF8 fcc 4.333 4.388 tI4 bct2 1.003a0 �0.218 0.970a0 0.218 N (4) 0.41 �0.013 0.3
6.128 6.206 (001) 0.999c0 1.006c0 (D) F

PbTe Fm3̄m 38295 cF8 fcc 4.569 4.634 tI4 bct2 0.985a0 �0.520 0.96a0 0.086 N (4) 0.72 0.072 �1.5
Fig. 2e 6.462 6.554 (001) 1.001c0 1.004c0 (I) PF
SnTe Fm3̄m 52489 cF8 fcc 4.471 4.528 tI4 bct2 1.027a0 �0.058 1.010a0 0.058 N (4) 0.15 �0.107 2.7

6.323 6.404 (001) 0.998c0 0.999c0 (D) VR

Properties of bulk structure: compound (⇥ indicates experimental validation), space group, ICSD number31, Pearson symbol, Bravais lattice39, experimental and DFT equilibrium lattices a,c in (Å).
Properties under the simulated epitaxial growth condition: Pearson symbol, Bravais lattice with conventional cleavage Miller indices, critical value for band inversion (acrit), SOC band energy difference
(ESOCk (ref.)) at the TRIMwith the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) (ESOCg (ref.)), TRIMs having band inversion withmultiplicity39, SOC energy-gap
discrepancy (⇤Ek) at the ab initio equilibrium lattice, SOC band energy difference (ESOCk (a0)) at the TRIMwith the ab initio equilibrium lattice, HT-descriptor (�̂TI). The labels below �̂TI indicate: F(fragile),
R(robust), VR(very robust), PF(potentially feasible), and HF(hardly feasible) (structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).
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Table 1 | Properties of bulk and simulated epitaxial structures.

Bulk Simulated epitaxial growth (a optimized, c/a free)

Compound Space ICSD # Pearson Latt. Exp. DFT Pearson Latt. acrit ESOCk Ref. ESOCg TRIM ⇥Ek @ ESOCk @ �̂TI

group ref. 31 symbol ref. 39 a0,c0 a0,c0 symbol cleav. (Å) ‘ref’ lattice ‘ref’ (mult.) (a0,c0) (a0,c0) (%)

Sb2Te2S R3̄m – hR5 rhl1 – 4.192 hR5 rhl1 1.006a0 �0.106 1.019a0 0.106 ⇥ (1) 0.21 0.043 0.6
31.001 (0001) 0.993c0 0.975c0 (D) PF

Sb2Te2Se R3̄m 2085 hR5 rhl1 4.188 4.244 hR5 rhl1 0.987a0 �0.079 a0 0.079 ⇥ (1) 0.21 �0.079 �1.3
⇥ 29.938 31.212 (0001) 1.017c0 c0 (D) R
Bi2Te2S R3̄m 617050 hR5 rhl1 4.33 4.297 hR5 rhl1 0.987a0 �0.089 a0 0.089 ⇥ (1) 0.62 �0.089 �1.3
Fig. 2a 30.07 31.513 (0001) 1.013c0 c0 (D) R
Bi2Te2Se R3̄m 43512 hR5 rhl1 4.282 4.347 hR5 rhl1 0.943a0 �0.302 a0 0.21 ⇥ (1) 0.63 �0.302 �5.7
⇥ 29.861 31.260 (0001) 1.061c0 c0 (I) VR

GeSb2Te4 R3̄m ref. 45 hR7 rhl1 4.21 4.295 hR7 rhl1 1.038a0 �0.036 1.051a0 0.033 Z(1) 0.30 0.170 3.8
40.6 42.295 (0001) 0.951c0 0.937c0 (I) HF

SnSb2Te4 R3̄m 30392 hR7 rhl1 4.312 4.389 hR7 rhl1 0.999a0 �0.065 1.011a0 0.065 Z(1) 0.22 0.013 �0.1
41.72 42.347 (0001) 0.998c0 0.984c0 (D) PF

PbSb2Te4 R3̄m 250250 hR7 rhl1 4.35 4.413 hR7 rhl1 0.988a0 �0.017 a0 0.017 Z(1) 0.35 �0.017 �1.2
41.712 42.792 (0001) 1.011c0 c0 (D) R

GeBi2Te4 R3̄m 30394 hR7 rhl1 4.282 4.390 hR7 rhl1 0.988a0 �0.076 a0 0.028 Z(1) 0.69 �0.076 �1.2
⇥ Fig. 2b 39.22 42.027 (0001) 1.009c0 c0 (I) R
SnBi2Te4 R3̄m ref. 46 hR7 rhl1 4.411 4.471 hR7 rhl1 0.939a0 �0.129 a0 0.062 Z(1) 0.65 �0.129 �6.1

41.511 42.799 (0001) 1.069c0 c0 (I) VR
PbBi2Te4 R3̄m ref. 47 hR7 rhl1 4.436 4.507 hR7 rhl1 0.914a0 �0.126 a0 0.061 Z(1) 0.74 �0.126 �8.6
⇥ 41.77 43.339 (0001) 1.077c0 c0 (I) VR
PbBi2Se4 R3̄m ref. 48 hR7 rhl1 4.16 4.250 hR7 rhl1 1.035a0 �0.079 1.052a0 0.035 Z(1) 0.41 0.314 5.2

39.2 41.755 (0001) 0.944c0 0.928c0 (I) HF

PbBi4Se7 P3̄m1 ref. 49 hP12 hex 4.25 4.216 hP12 hex 1.018a0 �0.016 1.023a0 0.016 A(1) 0.41 0.128 2.3
22.68 23.839 (0001) 0.971c0 0.966c0 (D) PF

GeBi4Te7 P3̄m1 42891 hP12 hex 4.36 4.412 hP12 hex 0.968a0 �0.037 a0 0.02 A(1) 0.69 �0.037 �3.2
24.11 23.932 (0001) 1.074c0 c0 (I) VR

SnBi4Te7 P3̄m1 ref. 50 hP12 hex 4.392 4.460 hP12 hex 0.926a0 �0.092 a0 0.014 A(1) 0.59 �0.092 �7.4
23.99 25.036 (0001) 1.085c0 c0 (I) VR

PbBi4Te7 P3̄m1 42707 hP12 hex 4.42 4.472 hP12 hex 0.959a0 �0.144 a0 0.085 A(1) 0.60 �0.144 �4.1
⇥ Fig. 2c 23.6 24.863 (0001) 1.063c0 c0 (I) VR
GeSb4Te7 P3̄m1 42875 hP12 hex 4.212 4.321 hP12 hex 0.986a0 �0.016 a0 0.016 A(1) 0.32 �0.016 �1.4

23.651 24.398 (0001) 1.012c0 c0 (D) R
SnSb4Te7 P3̄m1 ref. 51 hP12 hex 4.37 4.367 hP12 hex 0.982a0 �0.041 a0 0.041 A(1) 0.26 �0.041 �1.8

23.79 24.623 (0001) 1.019c0 c0 (D) R
PbSb4Te7 P3̄m1 ref. 52 hP12 hex 4.306 4.384 hP12 hex 0.972a0 �0.068 a0 0.068 A(1) 0.30 �0.068 �2.8

24.017 24.681 (0001) 1.033c0 c0 (D) R

CsSnCl3 Pm3̄m 28082 cP5 cub 5.504 5.618 tP5 tet 0.951a0 �0.281 0.936a0 0.111 A(1) 0.34 0.646 �4.9
5.504 5.618 (001) 1.022c0 1.209c0 (I) HF

CsPbCl3 Pm3̄m 29072 cP5 cub 5.605 5.733 tP5 tet 0.914a0 �0.450 0.890a0 0.354 A(1) 1.11 1.073 �8.6
5.605 5.733 (001) 1.037c0 1.050c0 (I) HF

CsGeBr3 Pm3̄m 80320 cP5 cub 5.36 5.603 tP5 tet 0.955a0 �0.055 0.952a0 0.026 A(1) 0.16 0.591 �4.5
5.36 5.603 (001) 1.022c0 1.023c0 (I) HF

CsSnBr3 Pm3̄m 4071 cP5 cub 5.795 5.884 tP5 tet 0.972a0 �0.099 0.965a0 0.099 A(1) 0.34 0.288 �2.8
5.795 5.884 (001) 1.010c0 1.013c0 (D) PF

CsPbBr3 Pm3̄m 29073 cP5 cub 5.874 5.993 tP5 tet 0.934a0 �0.120 0.926a0 0.120 A(1) 1.11 0.641 �6.6
5.874 5.993 (001) 1.024c0 1.027c0 ( D) HF

CsSnI3 Pm3̄m 69997 cP5 cub 6.219 6.272 tP5 tet 0.993a0 �0.335 0.960a0 0.169 A(1) 0.39 0.070 �0.7
Fig. 2d 6.219 6.272 (001) 1.002c0 1.013c0 (I) PF

PbS Fm3̄m 38293 cF8 fcc 4.196 4.248 tI4 bct2 0.986a0 �0.129 0.970a0 0.129 N (4) 0.37 0.099 �1.4
5.934 6.008 (001) 1.005c0 1.009c0 (D) PF

PbSe Fm3̄m 38294 cF8 fcc 4.333 4.388 tI4 bct2 1.003a0 �0.218 0.970a0 0.218 N (4) 0.41 �0.013 0.3
6.128 6.206 (001) 0.999c0 1.006c0 (D) F

PbTe Fm3̄m 38295 cF8 fcc 4.569 4.634 tI4 bct2 0.985a0 �0.520 0.96a0 0.086 N (4) 0.72 0.072 �1.5
Fig. 2e 6.462 6.554 (001) 1.001c0 1.004c0 (I) PF
SnTe Fm3̄m 52489 cF8 fcc 4.471 4.528 tI4 bct2 1.027a0 �0.058 1.010a0 0.058 N (4) 0.15 �0.107 2.7

6.323 6.404 (001) 0.998c0 0.999c0 (D) VR

Properties of bulk structure: compound (⇥ indicates experimental validation), space group, ICSD number31, Pearson symbol, Bravais lattice39, experimental and DFT equilibrium lattices a,c in (Å).
Properties under the simulated epitaxial growth condition: Pearson symbol, Bravais lattice with conventional cleavage Miller indices, critical value for band inversion (acrit), SOC band energy difference
(ESOCk (ref.)) at the TRIMwith the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) (ESOCg (ref.)), TRIMs having band inversion withmultiplicity39, SOC energy-gap
discrepancy (⇤Ek) at the ab initio equilibrium lattice, SOC band energy difference (ESOCk (a0)) at the TRIMwith the ab initio equilibrium lattice, HT-descriptor (�̂TI). The labels below �̂TI indicate: F(fragile),
R(robust), VR(very robust), PF(potentially feasible), and HF(hardly feasible) (structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).
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Table 1 | Properties of bulk and simulated epitaxial structures.

Bulk Simulated epitaxial growth (a optimized, c/a free)

Compound Space ICSD # Pearson Latt. Exp. DFT Pearson Latt. acrit ESOCk Ref. ESOCg TRIM ⇥Ek @ ESOCk @ �̂TI

group ref. 31 symbol ref. 39 a0,c0 a0,c0 symbol cleav. (Å) ‘ref’ lattice ‘ref’ (mult.) (a0,c0) (a0,c0) (%)

Sb2Te2S R3̄m – hR5 rhl1 – 4.192 hR5 rhl1 1.006a0 �0.106 1.019a0 0.106 ⇥ (1) 0.21 0.043 0.6
31.001 (0001) 0.993c0 0.975c0 (D) PF

Sb2Te2Se R3̄m 2085 hR5 rhl1 4.188 4.244 hR5 rhl1 0.987a0 �0.079 a0 0.079 ⇥ (1) 0.21 �0.079 �1.3
⇥ 29.938 31.212 (0001) 1.017c0 c0 (D) R
Bi2Te2S R3̄m 617050 hR5 rhl1 4.33 4.297 hR5 rhl1 0.987a0 �0.089 a0 0.089 ⇥ (1) 0.62 �0.089 �1.3
Fig. 2a 30.07 31.513 (0001) 1.013c0 c0 (D) R
Bi2Te2Se R3̄m 43512 hR5 rhl1 4.282 4.347 hR5 rhl1 0.943a0 �0.302 a0 0.21 ⇥ (1) 0.63 �0.302 �5.7
⇥ 29.861 31.260 (0001) 1.061c0 c0 (I) VR

GeSb2Te4 R3̄m ref. 45 hR7 rhl1 4.21 4.295 hR7 rhl1 1.038a0 �0.036 1.051a0 0.033 Z(1) 0.30 0.170 3.8
40.6 42.295 (0001) 0.951c0 0.937c0 (I) HF

SnSb2Te4 R3̄m 30392 hR7 rhl1 4.312 4.389 hR7 rhl1 0.999a0 �0.065 1.011a0 0.065 Z(1) 0.22 0.013 �0.1
41.72 42.347 (0001) 0.998c0 0.984c0 (D) PF

PbSb2Te4 R3̄m 250250 hR7 rhl1 4.35 4.413 hR7 rhl1 0.988a0 �0.017 a0 0.017 Z(1) 0.35 �0.017 �1.2
41.712 42.792 (0001) 1.011c0 c0 (D) R

GeBi2Te4 R3̄m 30394 hR7 rhl1 4.282 4.390 hR7 rhl1 0.988a0 �0.076 a0 0.028 Z(1) 0.69 �0.076 �1.2
⇥ Fig. 2b 39.22 42.027 (0001) 1.009c0 c0 (I) R
SnBi2Te4 R3̄m ref. 46 hR7 rhl1 4.411 4.471 hR7 rhl1 0.939a0 �0.129 a0 0.062 Z(1) 0.65 �0.129 �6.1

41.511 42.799 (0001) 1.069c0 c0 (I) VR
PbBi2Te4 R3̄m ref. 47 hR7 rhl1 4.436 4.507 hR7 rhl1 0.914a0 �0.126 a0 0.061 Z(1) 0.74 �0.126 �8.6
⇥ 41.77 43.339 (0001) 1.077c0 c0 (I) VR
PbBi2Se4 R3̄m ref. 48 hR7 rhl1 4.16 4.250 hR7 rhl1 1.035a0 �0.079 1.052a0 0.035 Z(1) 0.41 0.314 5.2

39.2 41.755 (0001) 0.944c0 0.928c0 (I) HF

PbBi4Se7 P3̄m1 ref. 49 hP12 hex 4.25 4.216 hP12 hex 1.018a0 �0.016 1.023a0 0.016 A(1) 0.41 0.128 2.3
22.68 23.839 (0001) 0.971c0 0.966c0 (D) PF

GeBi4Te7 P3̄m1 42891 hP12 hex 4.36 4.412 hP12 hex 0.968a0 �0.037 a0 0.02 A(1) 0.69 �0.037 �3.2
24.11 23.932 (0001) 1.074c0 c0 (I) VR

SnBi4Te7 P3̄m1 ref. 50 hP12 hex 4.392 4.460 hP12 hex 0.926a0 �0.092 a0 0.014 A(1) 0.59 �0.092 �7.4
23.99 25.036 (0001) 1.085c0 c0 (I) VR

PbBi4Te7 P3̄m1 42707 hP12 hex 4.42 4.472 hP12 hex 0.959a0 �0.144 a0 0.085 A(1) 0.60 �0.144 �4.1
⇥ Fig. 2c 23.6 24.863 (0001) 1.063c0 c0 (I) VR
GeSb4Te7 P3̄m1 42875 hP12 hex 4.212 4.321 hP12 hex 0.986a0 �0.016 a0 0.016 A(1) 0.32 �0.016 �1.4

23.651 24.398 (0001) 1.012c0 c0 (D) R
SnSb4Te7 P3̄m1 ref. 51 hP12 hex 4.37 4.367 hP12 hex 0.982a0 �0.041 a0 0.041 A(1) 0.26 �0.041 �1.8

23.79 24.623 (0001) 1.019c0 c0 (D) R
PbSb4Te7 P3̄m1 ref. 52 hP12 hex 4.306 4.384 hP12 hex 0.972a0 �0.068 a0 0.068 A(1) 0.30 �0.068 �2.8

24.017 24.681 (0001) 1.033c0 c0 (D) R

CsSnCl3 Pm3̄m 28082 cP5 cub 5.504 5.618 tP5 tet 0.951a0 �0.281 0.936a0 0.111 A(1) 0.34 0.646 �4.9
5.504 5.618 (001) 1.022c0 1.209c0 (I) HF

CsPbCl3 Pm3̄m 29072 cP5 cub 5.605 5.733 tP5 tet 0.914a0 �0.450 0.890a0 0.354 A(1) 1.11 1.073 �8.6
5.605 5.733 (001) 1.037c0 1.050c0 (I) HF

CsGeBr3 Pm3̄m 80320 cP5 cub 5.36 5.603 tP5 tet 0.955a0 �0.055 0.952a0 0.026 A(1) 0.16 0.591 �4.5
5.36 5.603 (001) 1.022c0 1.023c0 (I) HF

CsSnBr3 Pm3̄m 4071 cP5 cub 5.795 5.884 tP5 tet 0.972a0 �0.099 0.965a0 0.099 A(1) 0.34 0.288 �2.8
5.795 5.884 (001) 1.010c0 1.013c0 (D) PF

CsPbBr3 Pm3̄m 29073 cP5 cub 5.874 5.993 tP5 tet 0.934a0 �0.120 0.926a0 0.120 A(1) 1.11 0.641 �6.6
5.874 5.993 (001) 1.024c0 1.027c0 ( D) HF

CsSnI3 Pm3̄m 69997 cP5 cub 6.219 6.272 tP5 tet 0.993a0 �0.335 0.960a0 0.169 A(1) 0.39 0.070 �0.7
Fig. 2d 6.219 6.272 (001) 1.002c0 1.013c0 (I) PF

PbS Fm3̄m 38293 cF8 fcc 4.196 4.248 tI4 bct2 0.986a0 �0.129 0.970a0 0.129 N (4) 0.37 0.099 �1.4
5.934 6.008 (001) 1.005c0 1.009c0 (D) PF

PbSe Fm3̄m 38294 cF8 fcc 4.333 4.388 tI4 bct2 1.003a0 �0.218 0.970a0 0.218 N (4) 0.41 �0.013 0.3
6.128 6.206 (001) 0.999c0 1.006c0 (D) F

PbTe Fm3̄m 38295 cF8 fcc 4.569 4.634 tI4 bct2 0.985a0 �0.520 0.96a0 0.086 N (4) 0.72 0.072 �1.5
Fig. 2e 6.462 6.554 (001) 1.001c0 1.004c0 (I) PF
SnTe Fm3̄m 52489 cF8 fcc 4.471 4.528 tI4 bct2 1.027a0 �0.058 1.010a0 0.058 N (4) 0.15 �0.107 2.7

6.323 6.404 (001) 0.998c0 0.999c0 (D) VR

Properties of bulk structure: compound (⇥ indicates experimental validation), space group, ICSD number31, Pearson symbol, Bravais lattice39, experimental and DFT equilibrium lattices a,c in (Å).
Properties under the simulated epitaxial growth condition: Pearson symbol, Bravais lattice with conventional cleavage Miller indices, critical value for band inversion (acrit), SOC band energy difference
(ESOCk (ref.)) at the TRIMwith the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) (ESOCg (ref.)), TRIMs having band inversion withmultiplicity39, SOC energy-gap
discrepancy (⇤Ek) at the ab initio equilibrium lattice, SOC band energy difference (ESOCk (a0)) at the TRIMwith the ab initio equilibrium lattice, HT-descriptor (�̂TI). The labels below �̂TI indicate: F(fragile),
R(robust), VR(very robust), PF(potentially feasible), and HF(hardly feasible) (structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).
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FIG. 2: Two dimensional surface electronic structure for selected compounds. Surface electronic band structures,
Brillouin zone and charge density. (a) Bi2Te2S, (b) GeBi2Te4, (c) PbBi4Te7, (d) CsSnI3 and (e) PbTe. (a’) Charge density
of Bi2Te2S projected on the conic bands forming the Dirac point. The conducting surface states mainly originate from the Te
and S atoms on the surface layer. (f) 3D-BZ of bct2 PbTe projected onto the 2D-BZ of the (001) surface. The 3D-N points
become the 2D locations of the cones.

band inversion (at � or Z). The third group of materials
has space group P3̄m1 (#164) with layered hexagonal
lattice. Like before, they are strong TIs (one band in-
version at A with multiplicity 1). The materials in the
fourth group are cubic with Pm3̄m space group (#221).
They are strong TIs having one band inversion at the A
point of the epitaxially distorted tet BZ (multiplicity 1)
[? ]. The fifth group of materials, PbS, PbSe, PbTe, and
SnTe, have fcc lattice and Fm3̄m space group (# 225).
They are weak TIs with a band inversion observed at the
N point of the distorted bct2 BZ (multiplicity 4) [? ].
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3% < |�̂TI|⇥hardly-feasible.

To describe the protected surface states coming from
the projection of the 3D TRIMs onto the 2D surface Bril-
louin zone, we have characterized the surface band struc-
tures for five systems, one per class (Bi2Te2S, GeBi2Te4,
PbBi4Te7, CsSnI3, PbTe). They are shown in Figures
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FIG. 2: Two dimensional surface electronic structure for selected compounds. Surface electronic band structures,
Brillouin zone and charge density. (a) Bi2Te2S, (b) GeBi2Te4, (c) PbBi4Te7, (d) CsSnI3 and (e) PbTe. (a’) Charge density
of Bi2Te2S projected on the conic bands forming the Dirac point. The conducting surface states mainly originate from the Te
and S atoms on the surface layer. (f) 3D-BZ of bct2 PbTe projected onto the 2D-BZ of the (001) surface. The 3D-N points
become the 2D locations of the cones.

band inversion (at � or Z). The third group of materials
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SnTe, have fcc lattice and Fm3̄m space group (# 225).
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Nature Materials,11(7), 614-619 (2012) DOI: 10.1038/nmat3332	


Projects on surfaces by aligning semicones and checking thermodynamics of planes	


BULK 

Surface electronic band structures, Brillouin zone and charge density.  (a) Bi2Te2S, (b) GeBi2Te4 , (c) PbBi4Te7, d) PbTe (!! !!") slab, 
and (e) PbTe (100) slab. (a’) Charge density of Bi2Te2S projected on the conic bands forming the Dirac point. The conducting surface states 
mainly originate from the Te and S atoms on the surface layer. (f) 3D Brillouin zone of bct PbTe and 2D Brillouin zones of its 

projected  (!! !!")  and (100) surface. The eight equivalent time-reversal-invariant points N, are labeled. 

Surface electronic band structures, Brillouin zone and charge density.  (a) Bi2Te2S, (b) GeBi2Te4 , (c) PbBi4Te7 and 
(d) PbTe. (a’) Charge density of Bi2Te2S projected on the conic bands forming the Dirac point. The conducting surface states 
mainly originate from the Te and S atoms on the surface layer. (e) 3D Brillouin zone of bct PbTe and 2D Brillouin zone of its 

projected (!! !!") surface. The eight equivalent time-reversal-invariant points N, are labeled. HT Descriptor based search	
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critical temperatures). In other words, the descriptor is the language 
with which the researcher speaks to the database, and thus the 
heart of any e!ective HT implementation. In Table 1 we illustrate 
examples of recently introduced descriptors.

Once a good descriptor is identi#ed, the search for better 
materials within the repository can be performed intrinsically or 
extrinsically, depending on whether the optimum solutions are 
already included in the set of calculations or not. Intrinsic searches 
include just step (iii), require only fast descriptors, and may employ 
various informatics techniques. Examples of previous such searches 
include the scanning of better cathode materials27,28, and the uncov-
ering of unknown compounds9,29,30, novel topological insulators16 or 
thermoelectric materials15. Extrinsic searches involve all three steps, 
because the search for an optimal solution includes iterations lead-
ing to an expansion of the repository.

An important component of extrinsic HT computational research 
is a scheme capable of using the evaluation of descriptors on exist-
ing database entries to guide new calculations not yet included in 
the database. Examples of such schemes published in the literature 
comprise evolutionary and genetic algorithms7,8, data mining of 
spectral decompositions3 and Bayesian probabilities10, re#nement 
and optimization by cluster expansion13,31 and structure map analy-
sis32–34. Neural networks35,36 and support vector machines37 have 
also been utilized in a few cases. $ese methods may sometimes 
be used to bypass step (iii) of the HT analysis, that is, the formula-
tion of a physically meaningful descriptor, so that a search can still 
be implemented even with only a super#cial understanding of the 
physical problem.

Areas of current application
Following the general framework outlined above, we describe in 
this section a few speci#c examples of computational HT studies 
reported in the literature, ordered by increasing degree of complexity. 

!ermodynamics for the identi"cation of binary and ternary 
compounds. $e identi#cation of stable structures is the #rst step 
in the design of materials with various speci#c functionalities. $e 
proper descriptor of alloy stability, the formation enthalpy, is the 
simplest example of a parameter used for HT materials development.

Alloys are the workhorse material of many important techno-
logical applications. $us, #nding new and improved alloys could 

be transformative in some areas and would have a substantial 
economic impact. When improving an existing alloy or designing 
a new one, scientists rely on databases of alloy thermodynamics 
and phase diagrams (for example, the Massalski’s Binary Alloy 
Phase Diagrams38 and the Villars’s et  al. Pauling File39). Although 
the utility of these repositories is tremendous, they could be of even 
greater use if they were more complete. Experimental complete-
ness is di%cult to achieve due to the vast combination space and 
because experimentation is o&en di%cult: it requires high tempera-
tures or pressures, very long equilibration processes, or may involve 
hazardous, highly reactive, poisonous or radioactive materials. 
Computational compilation of the properties of materials is more 
feasible and will lead to much more complete repositories. Examples 
that demonstrate this are the almost simultaneous prediction and 
experimental veri#cation of the previously unknown C11b structure 
of the Pd2Ti compound9,40, the veri#cation by Niu et al.41 of an ear-
lier prediction42 that the CrB4 compound, thought for 40 years to 
have an oI10 structure, is actually more stable in an oP10 structure, 
and the simultaneous synthesis and solution, by an ab initio evolu-
tionary search, of an unexpectedly complex tI56 crystal structure of 
CaB6 (ref. 43).

In alloy design, the targets of the formation enthalpy descrip-
tor are stable phases. $e HT ab initio method explores the phase 
stability landscape of alloys by calculating the descriptor for a large 
number of possible structures. An HT code must perform these 
calculations automatically, transform the structures into standard 
forms that are the easiest to calculate, and automatically set the nec-
essary k-point grid densities, basis-set energy cuto!s and relaxation 
cycles with a convergence tolerance of the order of a few meV per 
atom44. It should also respond automatically to calculation failures, 
due to insu%cient hardware resources or runtime errors of the 
ab initio calculation itself. $ese are among the most di%cult chal-
lenges in HT database generation that have only recently been over-
come (ref. 44 gives details about how this automatic data generation 
is implemented in the AFLOW HT framework). $e initial search is 
performed on a set of known crystal structures, of all lattice types, 
spanning the entire composition range of the investigated systems3,9. 
In advanced HT studies this set includes hundreds of structures per 
system44. In subsequent steps, the search is o&en aided by data-min-
ing and optimization techniques that re#ne and accelerate the struc-
ture screening. $ey include a variety of di!erent approaches: for 

Table 1 | Examples of descriptors introduced in the literature.
Problem Combination of materials properties (gene) Descriptor
Structure stability: convex hull of an alloy 
system

Formation enthalpy (Hf) as a function of concentration (x) and the 
enthalpies (H) of A and B.

Hf(x) = H(A1−xBx) − (1−x)H(A)−xH(B)

Phase stability in off-lattice alloys Spectral decomposition of alloy vector-energies (En,p, n-rows = species, 
p-columns = configurations) with principal-component-analysis 
coefficients (αi) and truncation error ( (d)) (ref. 3).

En,p α1En,1  αp–1En,p–1 + (d)+ +

Nanosintered thermoelectrics Ratio of the average power factor (<P>) to the grain size (L) (ref. 15). thermo �ˆ χ <P>
L

Topological insulators (epitaxial growth) Variational ratio of spin–orbit distortion versus non-spin–orbit 
derivative strain (EkSOC , EknoSOC , spin/no spin–orbit bandgaps at 
k, a0 lattice)16.

Ek
Ek

TI � –ˆ χ
a0(a0)

(a)0

SOC

noSOC a0 a0

Power conversion efficiency of a solar cell 
(spectroscopic limited maximum efficiency)

Ratio of the maximum output power density (Pm) to the incident solar 
energy density (Pin) — a function (η) of the radiative electron–hole 
recombination current (fr) and the photon absorptivity (α(E)) — 
versus bandgap energy (Eg)62.

η(α(E),fr) = Pm/Pin; Eg

Non-proportionality in scintillators Maximum mismatch between effective masses of electrons (me) 
and holes (mh)75.

,
np � max ˆ χ ( (mh

me

me
mh

Morphotropic phase boundary 
piezoelectrics

Energy proximity between tetragonal, rhombohedra and rotational 
distortions (ΔEp). Angular coordinate (αAB) of the energy minimum in 
the A–B off-centerings energy map for ABO3 systems79.

∆Ep � 0.5 eV
αAB ≈ 45°
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critical temperatures). In other words, the descriptor is the language 
with which the researcher speaks to the database, and thus the 
heart of any e!ective HT implementation. In Table 1 we illustrate 
examples of recently introduced descriptors.

Once a good descriptor is identi#ed, the search for better 
materials within the repository can be performed intrinsically or 
extrinsically, depending on whether the optimum solutions are 
already included in the set of calculations or not. Intrinsic searches 
include just step (iii), require only fast descriptors, and may employ 
various informatics techniques. Examples of previous such searches 
include the scanning of better cathode materials27,28, and the uncov-
ering of unknown compounds9,29,30, novel topological insulators16 or 
thermoelectric materials15. Extrinsic searches involve all three steps, 
because the search for an optimal solution includes iterations lead-
ing to an expansion of the repository.

An important component of extrinsic HT computational research 
is a scheme capable of using the evaluation of descriptors on exist-
ing database entries to guide new calculations not yet included in 
the database. Examples of such schemes published in the literature 
comprise evolutionary and genetic algorithms7,8, data mining of 
spectral decompositions3 and Bayesian probabilities10, re#nement 
and optimization by cluster expansion13,31 and structure map analy-
sis32–34. Neural networks35,36 and support vector machines37 have 
also been utilized in a few cases. $ese methods may sometimes 
be used to bypass step (iii) of the HT analysis, that is, the formula-
tion of a physically meaningful descriptor, so that a search can still 
be implemented even with only a super#cial understanding of the 
physical problem.

Areas of current application
Following the general framework outlined above, we describe in 
this section a few speci#c examples of computational HT studies 
reported in the literature, ordered by increasing degree of complexity. 

!ermodynamics for the identi"cation of binary and ternary 
compounds. $e identi#cation of stable structures is the #rst step 
in the design of materials with various speci#c functionalities. $e 
proper descriptor of alloy stability, the formation enthalpy, is the 
simplest example of a parameter used for HT materials development.

Alloys are the workhorse material of many important techno-
logical applications. $us, #nding new and improved alloys could 

be transformative in some areas and would have a substantial 
economic impact. When improving an existing alloy or designing 
a new one, scientists rely on databases of alloy thermodynamics 
and phase diagrams (for example, the Massalski’s Binary Alloy 
Phase Diagrams38 and the Villars’s et  al. Pauling File39). Although 
the utility of these repositories is tremendous, they could be of even 
greater use if they were more complete. Experimental complete-
ness is di%cult to achieve due to the vast combination space and 
because experimentation is o&en di%cult: it requires high tempera-
tures or pressures, very long equilibration processes, or may involve 
hazardous, highly reactive, poisonous or radioactive materials. 
Computational compilation of the properties of materials is more 
feasible and will lead to much more complete repositories. Examples 
that demonstrate this are the almost simultaneous prediction and 
experimental veri#cation of the previously unknown C11b structure 
of the Pd2Ti compound9,40, the veri#cation by Niu et al.41 of an ear-
lier prediction42 that the CrB4 compound, thought for 40 years to 
have an oI10 structure, is actually more stable in an oP10 structure, 
and the simultaneous synthesis and solution, by an ab initio evolu-
tionary search, of an unexpectedly complex tI56 crystal structure of 
CaB6 (ref. 43).

In alloy design, the targets of the formation enthalpy descrip-
tor are stable phases. $e HT ab initio method explores the phase 
stability landscape of alloys by calculating the descriptor for a large 
number of possible structures. An HT code must perform these 
calculations automatically, transform the structures into standard 
forms that are the easiest to calculate, and automatically set the nec-
essary k-point grid densities, basis-set energy cuto!s and relaxation 
cycles with a convergence tolerance of the order of a few meV per 
atom44. It should also respond automatically to calculation failures, 
due to insu%cient hardware resources or runtime errors of the 
ab initio calculation itself. $ese are among the most di%cult chal-
lenges in HT database generation that have only recently been over-
come (ref. 44 gives details about how this automatic data generation 
is implemented in the AFLOW HT framework). $e initial search is 
performed on a set of known crystal structures, of all lattice types, 
spanning the entire composition range of the investigated systems3,9. 
In advanced HT studies this set includes hundreds of structures per 
system44. In subsequent steps, the search is o&en aided by data-min-
ing and optimization techniques that re#ne and accelerate the struc-
ture screening. $ey include a variety of di!erent approaches: for 

Table 1 | Examples of descriptors introduced in the literature.
Problem Combination of materials properties (gene) Descriptor
Structure stability: convex hull of an alloy 
system

Formation enthalpy (Hf) as a function of concentration (x) and the 
enthalpies (H) of A and B.

Hf(x) = H(A1−xBx) − (1−x)H(A)−xH(B)

Phase stability in off-lattice alloys Spectral decomposition of alloy vector-energies (En,p, n-rows = species, 
p-columns = configurations) with principal-component-analysis 
coefficients (αi) and truncation error ( (d)) (ref. 3).

En,p α1En,1  αp–1En,p–1 + (d)+ +

Nanosintered thermoelectrics Ratio of the average power factor (<P>) to the grain size (L) (ref. 15). thermo �ˆ χ <P>
L

Topological insulators (epitaxial growth) Variational ratio of spin–orbit distortion versus non-spin–orbit 
derivative strain (EkSOC , EknoSOC , spin/no spin–orbit bandgaps at 
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(spectroscopic limited maximum efficiency)

Ratio of the maximum output power density (Pm) to the incident solar 
energy density (Pin) — a function (η) of the radiative electron–hole 
recombination current (fr) and the photon absorptivity (α(E)) — 
versus bandgap energy (Eg)62.
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ZT = ⇥S2T
�

P = �S2

ZT > 1� S > 156µV/K
from Wiedemann-Franz law (room T) 

ZT = ⇥S2T
�

must increase 

must decrease 

Thermoelectrics: convert flow of electronic entropy in electronic current 

constant or decrease less than k 

must decrease 
Bi2Te3 

Courtesy: G. Bernard-Granger, LITEN, CEA-Grenoble. 

sintering 
polycrystalline 

thermoelectrics	
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ZT = ⇥S2T
�

P = �S2

Sintered compounds have diffusive scattering for carriers  
(similar diffusive model of phonon transport [1])  
 
Then mean free path is of the order of the grain: 
(so we can play with L) 
 
From the Constant Relaxation Time Approximation (CRTA) 
to Constant Mean Free Path Approximation (CMFPA) [2,3] 
 

� � L

[1] PRB 67, 054302 (2003), JAP 93, 793 (2003), RMP 61, 605 (1989), PRB 48, 16373 (1993) 
[2] JAP 108, 124306 (2010) 
[3] PRX 1, 021012 (2011) 

thermoelectrics	


EXAMPLE:	  Thermoelectricity	  
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ZT = ⇥S2T
�

P = �S2

$ZT=\frac{\sigma S^2 T}{\kappa_{ph}+\kappa_{e}}$ 
$\lambda_{e}^{\rm bulk}<\lambda_{ph}^{\rm bulk}<L \,\,\, \Rightarrow \{\sigma,

\kappa\}\,$ need $\tau$ \& phons$ \,\, \Rightarrow ZT$ 
usually:  $\lambda_e^{\rm bulk}<\lambda_{ph}^{\rm bulk}$ 

$L<\lambda_{e}^{\rm bulk} \,\,\, \Rightarrow \sigma,\kappa\propto L \,\, \Rightarrow ZT \sim const \,\,\,\Rightarrow P\propto L$ 
$\lambda_e^{\rm bulk}<L<\lambda_{ph}^{\rm bulk} \,\,\, \Rightarrow \kappa\propto L \,\, \Rightarrow ZT \propto 1/L$ 

 
[1] PRB 67, 054302 (2003), JAP 93, 793 (2003), RMP 61, 605 (1989), PRB 48, 16373 (1993) 
[2] JAP 108, 124306 (2010) 
 

for materials usually: �bulk
e < �bulk

ph

THREE SCENARIOS versus L  

⇥bulk
e < ⇥bulk

ph < L � {⇤,�} need ⌅ & phons � ZT

1. BIG GRAINS  

⇥bulk
e < L < ⇥bulk

ph � � � L � ZT � 1/L
2. MEDIUM GRAINS 

L < ⇥bulk
e � ⇤,� � L � ZT � const � P � L

3. TINY GRAINS 

Small grain size (SGS) limit  
thermoelectrics	


Constant Mean Free Path Approximation  



ZT = ⇥S2T
�

P = �S2

for materials usually: �bulk
e < �bulk

ph

�bulk
e �bulk

ph

L

ZT

�
⇥,� � L � � L �

SGS limit  

OPTIMALITY is 
surfing the wave of  

carriers mean free paths 

regime regime regime

thermoelectrics	


PRX 1, 021012 (2011)   

Constant Mean Free Path Approximation  
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Calculation of the power factor, S2σ/L for ~13,000 compounds  
Boltzmann transport equation solved inside AFLOW 
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expression from Fröhlich and Mott [49] can be used to

estimate the MFP: !ionic
e ¼ð6a0=

ffiffiffiffi
"

p Þ½ð#%#0þ1Þ=ð#%#0Þ'(ffiffiffiffiffiffiffiffiffiffi
T=!

p
ðe!=T%1Þ, where ! is the Debye temperature. In

typical ionic materials, ð#% #0 þ 1Þ=ð#% #0Þ is close

to 1. ! is typically several hundred K. (For example,

!) 670 K for TiO2 [50].) This yields the shortest MFP

in the order of 1 nm. In the case of titanium oxide, for

example, the bulk MFP is indeed close to 1 nm, as reported

by Hendry et al. [51]. In contrast, for ZnO, the use of the

simple model in Ref. [52] and the largest measured bulk

mobility available in the literature of 200 cm2=Vs [53]

yields a mean free path of 7 nm.
The thermoelectric properties of micrograined poly-

crystalline titanium oxides have been measured, giving
P) 2 $W=cmK2 [54]. Using the value of !bulk

e estimated
above, our calculations for TiO2 yield P values in the same
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order of magnitude. However, the Magnéli phase Ti5O9

stands out (Ti10O18, Pearson symbol aP28, ICSD #31399).
Even with a 1 nm grain size, the P values obtained for
Ti10O18 (and also forB2Cs3Li2NaO6) are surprisingly large.
For example, the largest experimentally reported power
factor corresponds to FeSb2, with P!2300!W=cmK2 at
a temperature of 12K [55], andmeasured values for strongly
correlated systems YbAl3 (P! 340 !W=cmK2 at 80 K
[56]) or YbAgCu4 (P! 235 !W=cmK2 at 20 K [57–59])
are regarded as exceptionally high. In addition to having
larger effective masses, Ti10O18 has P larger than other
titanium-oxide compositions by more than an order of mag-
nitude. Even assuming that the least-optimal directions
dominated the overall P of the sintered system, this value
is surprising. Since the experimental samples were not
doped, the measured P do not correspond to the doped
optimized values, which might explain the difference.
Doping optimization may not always be simple, especially
for large-band-gaps systems. Too-large dopant concentra-
tions may also reduce mobility and affect the electronic
structure of the compound. All these precautions should be
considered when comparing our HT results to experiments.

The following considerations are relevant. First, for HT
calculations, there is no expectation of accuracy beyond the
estimate of the order of magnitude. This is sufficient
to establish trends and correlations, as the P values span 6
orders of magnitude throughout the list. Also, the properties
of a sintered powder critically depend on the fabrication
process. Different techniques, such as spark-plasma sinter-
ing or hot-isostatic pressing, result in different-quality grain
boundaries, which also depend on the particular chemical
compounds. Therefore, a high position in the list indicates
only a good potential towards high power factor, but it does
not necessarily predict a final good thermoelectric material.
Factors such as charge trapping at the interfaces may over-
shadow the good electronic-structure properties captured by
the HT-model calculations.

Directions for searching good sintered-powder thermo-
electrics are extracted from correlations between P and
other properties. Between the variables fx; yg, the Pearson
correlation [60] is defined as "x;y " covðx; yÞ=#x#y,
where covðx; yÞ is the covariance between the variables,
and #x and #y are the standard deviations, respectively.

In Table II, we show the positive correlation between
P=L and the band gap, the charge-carrier effective masses,
and the ratios between the maximum and minimum charge-
carrier effective masses. P=L is more weakly correlated to
the hole effective mass (mh) than to the electron effective
mass (me), and it is correlated only to the ratio of maximum
and minimum electron effective masses. For p-doping, it is
not correlated with the ratio of the masses. The reason
behind this asymmetric behavior is unclear and currently
under investigation.

We find also that compounds with a large number of
atoms per primitive cell tend to have the highest P. This

trend is depicted in Fig. 2 where the median of P=L is
shown to increase with increasing atoms per primitive
cell. At room temperature, the state-of-the-art Bi2Te3 com-
pound has been reported to yield power factor as high as
P? ¼ 66:1 !W=cmK2 [61]. Although most compounds in
our list have P lower than this value when L is a few nm,
there are still somewith P comparable to Bi2Te3. These are
good candidates for sintering.
The correlation found between the power factor and

the effective mass can be qualitatively understood by con-
sidering a simple model with a parabolic dispersion.
Following Mahan and Sofo [62], we can rewrite the ther-
moelectric properties of this model as

# ¼ #0I0; (5)

#S ¼ ðkB=eÞ#0I0; (6)

with #0 ¼ e2=@a0, Bohr’s radius a0, and the integrals

In ¼
Z 1

&1

ex

ðex þ 1Þ2 sðxÞx
ndx: (7)

Here sðxÞ ¼ @a0!ð!þ xkBTÞ and the function !ðEÞ is
given in Eq. (3). For parabolic dispersion, and under the
assumption of a constant-mean-free path $, the functions
sðxÞ and !ðEÞ reduce to

TABLE II. Calculated Pearson correlations between the nor-
malized power factor and other properties: band gap (Eg),

carriers’ effective mass (me, mh), and ratios between the maxi-
mum and minimum effective masses. Power factor is positively
correlated to most of these properties.

Pearson correlations
Eg me mh mmax

e =mmin
e mmax

h =mmin
h

logðPn=LÞ 0.25 0.28 0.10
logðPp=LÞ 0.40 0.07 0.00
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FIG. 2. Median of normalized power factors by grain size
versus number of atoms per primitive cell for n-doped com-
pounds (red squares) and p-doped compounds (green dots). High
P correlates with the number of atoms per cell.
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Even with a 1 nm grain size, the P values obtained for
Ti10O18 (and also forB2Cs3Li2NaO6) are surprisingly large.
For example, the largest experimentally reported power
factor corresponds to FeSb2, with P!2300!W=cmK2 at
a temperature of 12K [55], andmeasured values for strongly
correlated systems YbAl3 (P! 340 !W=cmK2 at 80 K
[56]) or YbAgCu4 (P! 235 !W=cmK2 at 20 K [57–59])
are regarded as exceptionally high. In addition to having
larger effective masses, Ti10O18 has P larger than other
titanium-oxide compositions by more than an order of mag-
nitude. Even assuming that the least-optimal directions
dominated the overall P of the sintered system, this value
is surprising. Since the experimental samples were not
doped, the measured P do not correspond to the doped
optimized values, which might explain the difference.
Doping optimization may not always be simple, especially
for large-band-gaps systems. Too-large dopant concentra-
tions may also reduce mobility and affect the electronic
structure of the compound. All these precautions should be
considered when comparing our HT results to experiments.

The following considerations are relevant. First, for HT
calculations, there is no expectation of accuracy beyond the
estimate of the order of magnitude. This is sufficient
to establish trends and correlations, as the P values span 6
orders of magnitude throughout the list. Also, the properties
of a sintered powder critically depend on the fabrication
process. Different techniques, such as spark-plasma sinter-
ing or hot-isostatic pressing, result in different-quality grain
boundaries, which also depend on the particular chemical
compounds. Therefore, a high position in the list indicates
only a good potential towards high power factor, but it does
not necessarily predict a final good thermoelectric material.
Factors such as charge trapping at the interfaces may over-
shadow the good electronic-structure properties captured by
the HT-model calculations.
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electrics are extracted from correlations between P and
other properties. Between the variables fx; yg, the Pearson
correlation [60] is defined as "x;y " covðx; yÞ=#x#y,
where covðx; yÞ is the covariance between the variables,
and #x and #y are the standard deviations, respectively.

In Table II, we show the positive correlation between
P=L and the band gap, the charge-carrier effective masses,
and the ratios between the maximum and minimum charge-
carrier effective masses. P=L is more weakly correlated to
the hole effective mass (mh) than to the electron effective
mass (me), and it is correlated only to the ratio of maximum
and minimum electron effective masses. For p-doping, it is
not correlated with the ratio of the masses. The reason
behind this asymmetric behavior is unclear and currently
under investigation.

We find also that compounds with a large number of
atoms per primitive cell tend to have the highest P. This

trend is depicted in Fig. 2 where the median of P=L is
shown to increase with increasing atoms per primitive
cell. At room temperature, the state-of-the-art Bi2Te3 com-
pound has been reported to yield power factor as high as
P? ¼ 66:1 !W=cmK2 [61]. Although most compounds in
our list have P lower than this value when L is a few nm,
there are still somewith P comparable to Bi2Te3. These are
good candidates for sintering.
The correlation found between the power factor and

the effective mass can be qualitatively understood by con-
sidering a simple model with a parabolic dispersion.
Following Mahan and Sofo [62], we can rewrite the ther-
moelectric properties of this model as

# ¼ #0I0; (5)
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critical temperatures). In other words, the descriptor is the language 
with which the researcher speaks to the database, and thus the 
heart of any e!ective HT implementation. In Table 1 we illustrate 
examples of recently introduced descriptors.

Once a good descriptor is identi#ed, the search for better 
materials within the repository can be performed intrinsically or 
extrinsically, depending on whether the optimum solutions are 
already included in the set of calculations or not. Intrinsic searches 
include just step (iii), require only fast descriptors, and may employ 
various informatics techniques. Examples of previous such searches 
include the scanning of better cathode materials27,28, and the uncov-
ering of unknown compounds9,29,30, novel topological insulators16 or 
thermoelectric materials15. Extrinsic searches involve all three steps, 
because the search for an optimal solution includes iterations lead-
ing to an expansion of the repository.

An important component of extrinsic HT computational research 
is a scheme capable of using the evaluation of descriptors on exist-
ing database entries to guide new calculations not yet included in 
the database. Examples of such schemes published in the literature 
comprise evolutionary and genetic algorithms7,8, data mining of 
spectral decompositions3 and Bayesian probabilities10, re#nement 
and optimization by cluster expansion13,31 and structure map analy-
sis32–34. Neural networks35,36 and support vector machines37 have 
also been utilized in a few cases. $ese methods may sometimes 
be used to bypass step (iii) of the HT analysis, that is, the formula-
tion of a physically meaningful descriptor, so that a search can still 
be implemented even with only a super#cial understanding of the 
physical problem.

Areas of current application
Following the general framework outlined above, we describe in 
this section a few speci#c examples of computational HT studies 
reported in the literature, ordered by increasing degree of complexity. 

!ermodynamics for the identi"cation of binary and ternary 
compounds. $e identi#cation of stable structures is the #rst step 
in the design of materials with various speci#c functionalities. $e 
proper descriptor of alloy stability, the formation enthalpy, is the 
simplest example of a parameter used for HT materials development.

Alloys are the workhorse material of many important techno-
logical applications. $us, #nding new and improved alloys could 

be transformative in some areas and would have a substantial 
economic impact. When improving an existing alloy or designing 
a new one, scientists rely on databases of alloy thermodynamics 
and phase diagrams (for example, the Massalski’s Binary Alloy 
Phase Diagrams38 and the Villars’s et  al. Pauling File39). Although 
the utility of these repositories is tremendous, they could be of even 
greater use if they were more complete. Experimental complete-
ness is di%cult to achieve due to the vast combination space and 
because experimentation is o&en di%cult: it requires high tempera-
tures or pressures, very long equilibration processes, or may involve 
hazardous, highly reactive, poisonous or radioactive materials. 
Computational compilation of the properties of materials is more 
feasible and will lead to much more complete repositories. Examples 
that demonstrate this are the almost simultaneous prediction and 
experimental veri#cation of the previously unknown C11b structure 
of the Pd2Ti compound9,40, the veri#cation by Niu et al.41 of an ear-
lier prediction42 that the CrB4 compound, thought for 40 years to 
have an oI10 structure, is actually more stable in an oP10 structure, 
and the simultaneous synthesis and solution, by an ab initio evolu-
tionary search, of an unexpectedly complex tI56 crystal structure of 
CaB6 (ref. 43).

In alloy design, the targets of the formation enthalpy descrip-
tor are stable phases. $e HT ab initio method explores the phase 
stability landscape of alloys by calculating the descriptor for a large 
number of possible structures. An HT code must perform these 
calculations automatically, transform the structures into standard 
forms that are the easiest to calculate, and automatically set the nec-
essary k-point grid densities, basis-set energy cuto!s and relaxation 
cycles with a convergence tolerance of the order of a few meV per 
atom44. It should also respond automatically to calculation failures, 
due to insu%cient hardware resources or runtime errors of the 
ab initio calculation itself. $ese are among the most di%cult chal-
lenges in HT database generation that have only recently been over-
come (ref. 44 gives details about how this automatic data generation 
is implemented in the AFLOW HT framework). $e initial search is 
performed on a set of known crystal structures, of all lattice types, 
spanning the entire composition range of the investigated systems3,9. 
In advanced HT studies this set includes hundreds of structures per 
system44. In subsequent steps, the search is o&en aided by data-min-
ing and optimization techniques that re#ne and accelerate the struc-
ture screening. $ey include a variety of di!erent approaches: for 

Table 1 | Examples of descriptors introduced in the literature.
Problem Combination of materials properties (gene) Descriptor
Structure stability: convex hull of an alloy 
system

Formation enthalpy (Hf) as a function of concentration (x) and the 
enthalpies (H) of A and B.

Hf(x) = H(A1−xBx) − (1−x)H(A)−xH(B)

Phase stability in off-lattice alloys Spectral decomposition of alloy vector-energies (En,p, n-rows = species, 
p-columns = configurations) with principal-component-analysis 
coefficients (αi) and truncation error ( (d)) (ref. 3).

En,p α1En,1  αp–1En,p–1 + (d)+ +

Nanosintered thermoelectrics Ratio of the average power factor (<P>) to the grain size (L) (ref. 15). thermo �ˆ χ <P>
L

Topological insulators (epitaxial growth) Variational ratio of spin–orbit distortion versus non-spin–orbit 
derivative strain (EkSOC , EknoSOC , spin/no spin–orbit bandgaps at 
k, a0 lattice)16.

Ek
Ek

TI � –ˆ χ
a0(a0)

(a)0

SOC

noSOC a0 a0

Power conversion efficiency of a solar cell 
(spectroscopic limited maximum efficiency)

Ratio of the maximum output power density (Pm) to the incident solar 
energy density (Pin) — a function (η) of the radiative electron–hole 
recombination current (fr) and the photon absorptivity (α(E)) — 
versus bandgap energy (Eg)62.

η(α(E),fr) = Pm/Pin; Eg

Non-proportionality in scintillators Maximum mismatch between effective masses of electrons (me) 
and holes (mh)75.

,
np � max ˆ χ ( (mh

me

me
mh

Morphotropic phase boundary 
piezoelectrics

Energy proximity between tetragonal, rhombohedra and rotational 
distortions (ΔEp). Angular coordinate (αAB) of the energy minimum in 
the A–B off-centerings energy map for ABO3 systems79.

∆Ep � 0.5 eV
αAB ≈ 45°
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critical temperatures). In other words, the descriptor is the language 
with which the researcher speaks to the database, and thus the 
heart of any e!ective HT implementation. In Table 1 we illustrate 
examples of recently introduced descriptors.

Once a good descriptor is identi#ed, the search for better 
materials within the repository can be performed intrinsically or 
extrinsically, depending on whether the optimum solutions are 
already included in the set of calculations or not. Intrinsic searches 
include just step (iii), require only fast descriptors, and may employ 
various informatics techniques. Examples of previous such searches 
include the scanning of better cathode materials27,28, and the uncov-
ering of unknown compounds9,29,30, novel topological insulators16 or 
thermoelectric materials15. Extrinsic searches involve all three steps, 
because the search for an optimal solution includes iterations lead-
ing to an expansion of the repository.

An important component of extrinsic HT computational research 
is a scheme capable of using the evaluation of descriptors on exist-
ing database entries to guide new calculations not yet included in 
the database. Examples of such schemes published in the literature 
comprise evolutionary and genetic algorithms7,8, data mining of 
spectral decompositions3 and Bayesian probabilities10, re#nement 
and optimization by cluster expansion13,31 and structure map analy-
sis32–34. Neural networks35,36 and support vector machines37 have 
also been utilized in a few cases. $ese methods may sometimes 
be used to bypass step (iii) of the HT analysis, that is, the formula-
tion of a physically meaningful descriptor, so that a search can still 
be implemented even with only a super#cial understanding of the 
physical problem.

Areas of current application
Following the general framework outlined above, we describe in 
this section a few speci#c examples of computational HT studies 
reported in the literature, ordered by increasing degree of complexity. 

!ermodynamics for the identi"cation of binary and ternary 
compounds. $e identi#cation of stable structures is the #rst step 
in the design of materials with various speci#c functionalities. $e 
proper descriptor of alloy stability, the formation enthalpy, is the 
simplest example of a parameter used for HT materials development.

Alloys are the workhorse material of many important techno-
logical applications. $us, #nding new and improved alloys could 

be transformative in some areas and would have a substantial 
economic impact. When improving an existing alloy or designing 
a new one, scientists rely on databases of alloy thermodynamics 
and phase diagrams (for example, the Massalski’s Binary Alloy 
Phase Diagrams38 and the Villars’s et  al. Pauling File39). Although 
the utility of these repositories is tremendous, they could be of even 
greater use if they were more complete. Experimental complete-
ness is di%cult to achieve due to the vast combination space and 
because experimentation is o&en di%cult: it requires high tempera-
tures or pressures, very long equilibration processes, or may involve 
hazardous, highly reactive, poisonous or radioactive materials. 
Computational compilation of the properties of materials is more 
feasible and will lead to much more complete repositories. Examples 
that demonstrate this are the almost simultaneous prediction and 
experimental veri#cation of the previously unknown C11b structure 
of the Pd2Ti compound9,40, the veri#cation by Niu et al.41 of an ear-
lier prediction42 that the CrB4 compound, thought for 40 years to 
have an oI10 structure, is actually more stable in an oP10 structure, 
and the simultaneous synthesis and solution, by an ab initio evolu-
tionary search, of an unexpectedly complex tI56 crystal structure of 
CaB6 (ref. 43).

In alloy design, the targets of the formation enthalpy descrip-
tor are stable phases. $e HT ab initio method explores the phase 
stability landscape of alloys by calculating the descriptor for a large 
number of possible structures. An HT code must perform these 
calculations automatically, transform the structures into standard 
forms that are the easiest to calculate, and automatically set the nec-
essary k-point grid densities, basis-set energy cuto!s and relaxation 
cycles with a convergence tolerance of the order of a few meV per 
atom44. It should also respond automatically to calculation failures, 
due to insu%cient hardware resources or runtime errors of the 
ab initio calculation itself. $ese are among the most di%cult chal-
lenges in HT database generation that have only recently been over-
come (ref. 44 gives details about how this automatic data generation 
is implemented in the AFLOW HT framework). $e initial search is 
performed on a set of known crystal structures, of all lattice types, 
spanning the entire composition range of the investigated systems3,9. 
In advanced HT studies this set includes hundreds of structures per 
system44. In subsequent steps, the search is o&en aided by data-min-
ing and optimization techniques that re#ne and accelerate the struc-
ture screening. $ey include a variety of di!erent approaches: for 

Table 1 | Examples of descriptors introduced in the literature.
Problem Combination of materials properties (gene) Descriptor
Structure stability: convex hull of an alloy 
system

Formation enthalpy (Hf) as a function of concentration (x) and the 
enthalpies (H) of A and B.

Hf(x) = H(A1−xBx) − (1−x)H(A)−xH(B)

Phase stability in off-lattice alloys Spectral decomposition of alloy vector-energies (En,p, n-rows = species, 
p-columns = configurations) with principal-component-analysis 
coefficients (αi) and truncation error ( (d)) (ref. 3).

En,p α1En,1  αp–1En,p–1 + (d)+ +

Nanosintered thermoelectrics Ratio of the average power factor (<P>) to the grain size (L) (ref. 15). thermo �ˆ χ <P>
L

Topological insulators (epitaxial growth) Variational ratio of spin–orbit distortion versus non-spin–orbit 
derivative strain (EkSOC , EknoSOC , spin/no spin–orbit bandgaps at 
k, a0 lattice)16.

Ek
Ek

TI � –ˆ χ
a0(a0)

(a)0

SOC

noSOC a0 a0

Power conversion efficiency of a solar cell 
(spectroscopic limited maximum efficiency)

Ratio of the maximum output power density (Pm) to the incident solar 
energy density (Pin) — a function (η) of the radiative electron–hole 
recombination current (fr) and the photon absorptivity (α(E)) — 
versus bandgap energy (Eg)62.

η(α(E),fr) = Pm/Pin; Eg

Non-proportionality in scintillators Maximum mismatch between effective masses of electrons (me) 
and holes (mh)75.

,
np � max ˆ χ ( (mh

me

me
mh

Morphotropic phase boundary 
piezoelectrics

Energy proximity between tetragonal, rhombohedra and rotational 
distortions (ΔEp). Angular coordinate (αAB) of the energy minimum in 
the A–B off-centerings energy map for ABO3 systems79.

∆Ep � 0.5 eV
αAB ≈ 45°
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the same crystal-structure  
Ce: YAlO3 vs. Ce:LuAlO3 

cation substitutions 

Ce: (Gd1-xLux)2SiO5 

dopants 

 NaI vs Tl:NaI 

crystal quality 

defects and inhomogeneities 

cation valence in multi-cation compounds 

isovalent cations (ex. Ce:Y3+Al3+O3) have better 
linearity than aliovalent cations 

(Ce:Y3+
2Si4+O5) 

temperature  

 

 

 

Introduction: Nonproportionality 
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Previous studies revealed variations in nonproportionality for compounds with: 
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Presence of dip: ↓ me à P ↓ 

Large Nonproportionality 
 

SrI2 

 conduction band  

valence band  

Small Nonproportionality 

K2LaCl5 

valence band  

 conduction band  

 dip: ↓P  no dip: ↑ P 

Modeling: Nonproportionality & Band structure 

scintillators	
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mr ratios are pressure dependent 

Free carriers in non-Vk compounds 
•  P ↑as mr à 1 

•  Spatial distribution of free e/h 
 depends on mass ratio. 
•  When free e/h are near 

luminescent  centers, loss 
decreases à P ↑ 

IEEE Trans. Nucl. Sci. 56, 2989 (2009). 

Cubic 

Non-cubic 
Free carriers in Vk compounds 

•  Cubic (P ↓), ↓non-cubic (P ↑) 
•  Vk-centers act as additional traps. 

•  Effective trapping in isotropic 
media à P ↓ 

anion 
cation 

self-trapped hole 

Vk-center: 

cub: Bi4Ge3O12(BGO), Y3Al5O12(YAG), Lu3Al5O12(LuAG), BaF2, ZnSe, CsI, NaI, BaHfO3,SrHfO3, LiBaF3.  
hex: LaBr3, LaCl3 ort: SrI2, YAlO3(YAP), LuAlO3(LuAP), K2LaCl5(KLC) mcl: Y2SiO5(YSO), Lu2SiO5(LSO) 

EXAMPLE: Modeling: NP vs. Effective ratio 

mr = max
�

m�
e

m�
h
, m�

h
m�

e

�
NP10/662 = LY10keV

LY662keV

versus 

scintillators	
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* * * 

* 

* 

* Activators: short λem (PMT), short lifetime 
and high emission cross section (resolution) 

* 

Host material selection 
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1A 

2A 

3B      4B      5B      6B      7B      81      82     83       1B      2B 

3A      4A      5A      6A      7A 

2A 

scintillators	




YAP BGO 

LaBr3 NaI SrI2 

red (theoretical), green (experimental) 

YAP 

BGO 

LaBr3 

NaI 
SrI2 

Theoretical light yield  

Dorenbos, NIM  486, 208 (2002) 

PAL vs ratio effective mass 

Photoelectric attenuation length 

go
od

 

go
od

 

good good 

LY=Eγ /2.5 Eg 

Ortiz et al., Comp. Mat. Sci. 44, 1042 (2009). 

PAL=FM/ρσpe 

LY vs ratio effective mass 

Combinatorial optimization 

IEEE Trans. Nucl. Sci. 56, 2989 (2009). 
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taking the bull from the horns 
•  Thermodynamics analysis 
•   Electronic structure analysis 
•   Nanoscale modeling 
  
This requires 
•  Understanding of physics (descriptor)  
•  Standardized databases. 
•  Methods to interrogate (correlate) huge amount of data. 
•  Framework development. Commitment from sponsors. 
 
FIVE YEARS plan: keep having fun with science 
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the Future is online 
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POSTDOC OPENINGS [~many] 
•  Transparent Cond. 
•  HT Corrosion  
•  Applied Math. & 
     Information theory 


