
### **High-throughput descriptors in materials development**



## **COMPUTATIONAL MATERIALS GENOME**



procedures of synthesis. Is there another way? Indeed, this is the burgeoning area of computational materials science called 'highthroughput' (HT) computational materials design. It is based on the marriage between computational quantum-mechanical-thermodynamic approaches<sup>1,2</sup> and a multitude of techniques rooted in database construction and intelligent data mining<sup>3</sup>. The concept is simple yet powerful: create a large database containing the calculated thermodynamic and electronic properties of existing and hypothetical materials, and then intelligently interrogate the database in the search of materials with the desired properties. Clearly, the entire construct should be validated by reality, namely the existing materials must be predicted correctly and the hypothetical ones should eventually be made Such a reality check feeds back to the

#### mature materials

### REVIEW ARTICLE power.

UBLISHED ONLINE: 20 FEBRUARY 2013 | DOI: 10.1038/NMAT3568

### The high-throughput highway to computational materials design

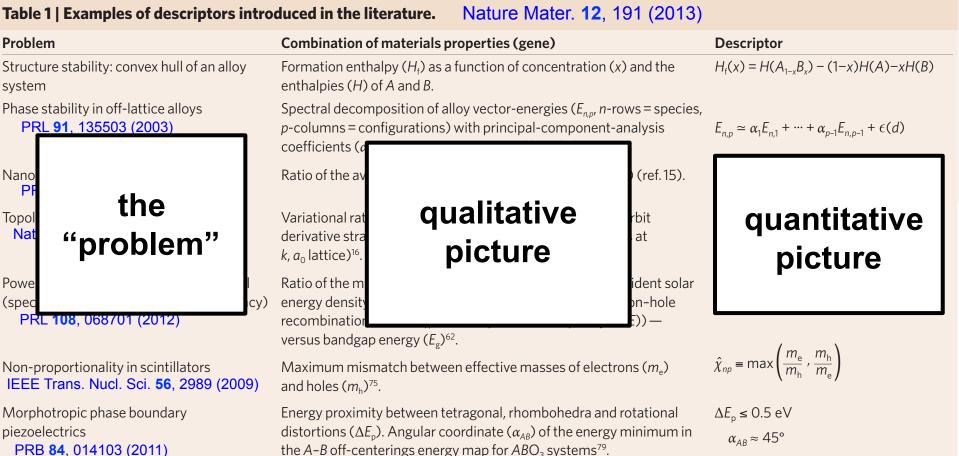
Curtarolo, Hart, Buongiorno Nardelli, Mingo, Sanvito, Levy



The practical implementation of computational HT is highly non-trivial. The method is employed in three strictly connected steps: (i) virtual materials growth: thermodynamic and electronic structure calculations of materials<sup>3,23</sup>; (ii) rational materials storage: systematic storage of the information in database repositories<sup>24,25</sup>; (iii) materials characterization and selection: data analysis aimed at selecting novel materials or gaining new physical insights<sup>15,19,26</sup>.

mature materials **REVIEW ARTICLE** 

PUBLISHED ONLINE: 20 FEBRUARY 2013 | DOI: 10.1038/NMAT3568


The high-throughput highway to computational materials design

Curtarolo, Hart, Buongiorno Nardelli, Mingo, Sanvito, Levy

DOI: 10.1038/NMAT3568 (March 2013)

## MATERIALS GENOME: genes+descriptors





4

The automatism is all about creating a big picture from to too many small details





CONSORTIUM www.aflowlib.org

Lycurgus cup (290~325 AD) AgAu NP~10nm dichroism by resonant surface plasmon 5

## NEED fast standards



Calculate electronic structure of all reported compounds

- ICSD ~150,000 (well defined ~50%)
- Work out all the prototype definitions/symmetries:
- Define standards in reciprocal space (on-line): a highly complex solution to an apparently simple problem
- Obtain LDAU parameters when required
- Adiabatic U  $E[U] = \int_0^{\{U\}} \delta E / \delta U_i \cdot dU_i$
- Automatic switch to LS coupling when required
- Calculate stability, if necessary
- Discover properties through correlations
- Make ONLINE Tools
- Use results as <u>STARTING POINTS</u>
- Works for VASP and QE

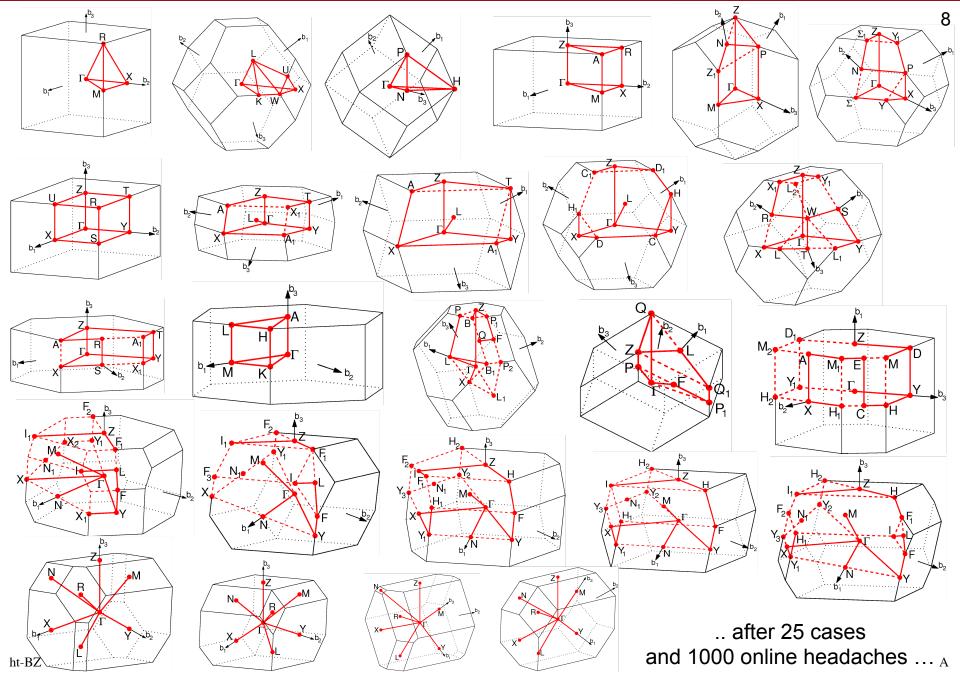
### **STANDARD in Real Space and Reciprocal Space**

## Algorithm has 25 self consistent points

 $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)_{BL}^{n+1} = \text{Dual}\left[\text{Minkowski}_{BL^*}\left[\text{Dual}\left[(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)_{BL}^n\right]\right]\right]$ 

14 Bravais Lattices → 25 Brillouin Zones → 25 Bravais Definitions

CUBIC: cub, bcc, fcc TETRAGONAL: tet, bct<sub>1</sub>, bct<sub>2</sub> ORTHORHOMBIC: orc, orcf<sub>1</sub>, orcf<sub>2</sub>, orcf<sub>2</sub>, orci, orcc HEXAGONAL/TRIGONAL: hex, rhl<sub>1</sub>, rhl<sub>2</sub> MONOCLINIC: mcl, mclc<sub>1</sub>, mclc<sub>2</sub>, mclc<sub>3</sub>, mclc<sub>4</sub>, mclc<sub>5</sub> TRICLINIC: tri<sub>1a</sub>, tri<sub>2a</sub>, tri<sub>1b</sub>, tri<sub>2b</sub>


materials.duke.edu/awrapper.html

High-throughput electronic structure calculations: Comp. Mat. Sci. **49**, 299-312 (2010)

7

А

### **STANDARD in Real Space and Reciprocal Space**



### **Repository of quantum mechanics calculations**

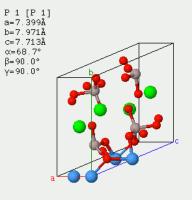
AFLOW framework libraries: <u>www.aflowlib.org</u> Online/socket commands for the SQL database interrogation. Distributed platform will work on Linux/UNIX platforms



AFLOWLIB.ORG (a) (b) Mn **CHOOSE DATABASES** 🧭 AFLOWLib 🗹 Structure Properties 📄 Electronic Properties 📄 Thermoelectric Properties 📄 Scintillator Database 🗹 Magnetic Properties 📄 Job Status Al<sub>5</sub>Mn<sub>24</sub> SEARCH AFLOWLIB (379,310 Compounds) Mn<sub>3</sub>Ni (188,768 Heusler Alloys; 173,324 Binary Alloys; 17,218 ICSD Compounds) Element(s) Al & Mn & Ni Usage: &(and), | (or), ~(not), ^(xor), m(metal) e.g. ~Si and Al: having Al but not Si AlMn<sub>2</sub> Species number 3 + Prototype Heusler (AlCu2Mn) Material Type any type Bravais Lattice Lattice System any lattice system (structure properties) any lattice AlMn Space Group Number Pearson Symbol (structure properties) Minimum band gap = 0Maximum band gap = 17.506 (electronic properties) Band Gap Type All types (electronic properties) Al<sub>5</sub>Mn<sub>2</sub> Minimum  $\langle P_n \rangle / L = 0.00$ Maximum  $< P_n > /L = 16025.65$ (thermoelectric properties) AlMnNi<sub>2</sub> MnNi<sub>3</sub> µW/cmK<sup>2</sup>nm µW/cmK<sup>2</sup>nm Minimum  $\langle P_p \rangle / L = 0.00$ Maximum <Pp>/L = 34373.53 (thermoelectric properties) µW/cmK<sup>2</sup>nm  $\mu W/cmK^2nm$ Al<sub>6</sub>Mn Minimum magnetic moment = Maximum magnetic moment = (magnetic properties) 0.00  $\mu_{\rm B}/atom$ 223.99  $\mu_{\rm B}/atom$ Minimum  $\Delta S(E_F) = 0.00$ Maximum  $\Delta S(E_F) = 1.00$ (magnetic properties) AFlow version from 299523 Calculated date from 2009-10-07 (Job status) Al<sub>2</sub>Ni Al<sub>3</sub>Ni<sub>2</sub> AlNi Al<sub>3</sub>Ni<sub>5</sub> AINia Ni А 30427 to 2012-07-31

Curtarolo *et al.*, *"AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations",* Comp. Mat. Sci. **58**, 227-235 (2012).

#### $Al_1Ca_1O_5Ta_1 \, (ICSD\# \, 99001)$


#### REAL SPACE LATTICES

| Lattices:                         | $a = 7.40 \text{ Å} \ b = 7.97 \text{ Å} \ c = 7.71 \text{ Å}$<br>$\alpha = 68.69^{\circ} \ \beta = 90.00^{\circ} \ \gamma = 90.00^{\circ}$ |            |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Volume:                           | 423.76Å <sup>3</sup>                                                                                                                        |            |
| Unit Cell Atom Number:            | 32                                                                                                                                          |            |
| Space Group Number:               | 14                                                                                                                                          |            |
| Pearson Symbol:                   | mP32                                                                                                                                        |            |
| Lattice Primitive:                | MCL Al1Ca1O5Ta1 #14.0 - (Al1Ca1O5Ta1_IC                                                                                                     | SD_99      |
| Lattice Variation:                | MCL                                                                                                                                         |            |
| Crystal Family:                   | Monoclinic                                                                                                                                  |            |
| Crystal System:                   | Monoclinic                                                                                                                                  |            |
| Crystal Class:                    | Monoclinic-prismatic                                                                                                                        |            |
| Point Group (Hermann Mauguin)     | : 2/m PGXTAL                                                                                                                                |            |
| Point Group (Schoenflies):        | C_2h                                                                                                                                        |            |
| Point Group Orbifold:             | 2*                                                                                                                                          |            |
| Point Group Type:                 | centrosymmetric                                                                                                                             |            |
| Point Group Order:                | 4                                                                                                                                           |            |
| Point Group Structure:            | 2 X Cyclic                                                                                                                                  |            |
| Superlattice Primitive unit cell: | MCL                                                                                                                                         |            |
| Superlattice Variation:           | MCL                                                                                                                                         |            |
| Pearson Symbol Superlattice:      | mP32                                                                                                                                        | Density:   |
| r custon by meet bupper autor     |                                                                                                                                             | Band Gap:  |
|                                   |                                                                                                                                             | Daliu Oab. |

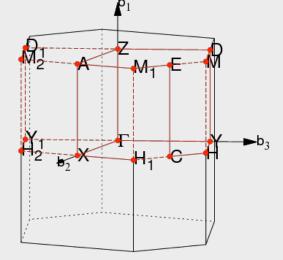
#### RECIPROCAL SPACE LATTICES

| Reciprocal Lattices:          | $  a = 0.85 \text{\AA}  b = 0.85 \text{\AA}  c = 0.87 \text{\AA} \\ \alpha = 111.31^{\circ} \text{\AA} = 90.00^{\circ}  \gamma = 90.00^{\circ} $ |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume:<br>Lattice Primitive: | 0.59 Å <sup>-3</sup><br>MCL                                                                                                                      |
| Lattice Variation:            | MCL                                                                                                                                              |

| Density:       | 5.45 g/cm <sup>3</sup> |
|----------------|------------------------|
| Band Gap:      | 2.68 eV                |
| Fit Band Gap:  | 4.53 eV                |
| Band Gap Type: | Indirect               |
| Electron Mass: | 6.66 (m <sub>0</sub> ) |
| Hole Mass:     | 2.85 (m <sub>0</sub> ) |



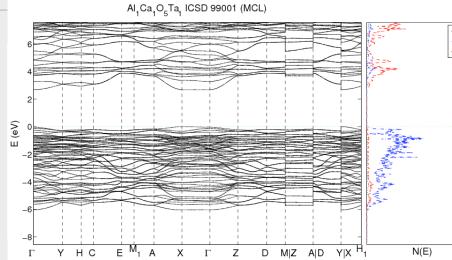
🗹 Turn spin off


□ Show atom labels

#### ball and stick 🛟

p

d


#### MCL path: Γ-Y-H-C-E-M<sub>1-</sub>A-X-Γ-Z-D-M|Z-A|D-Y|X-H<sub>1</sub>



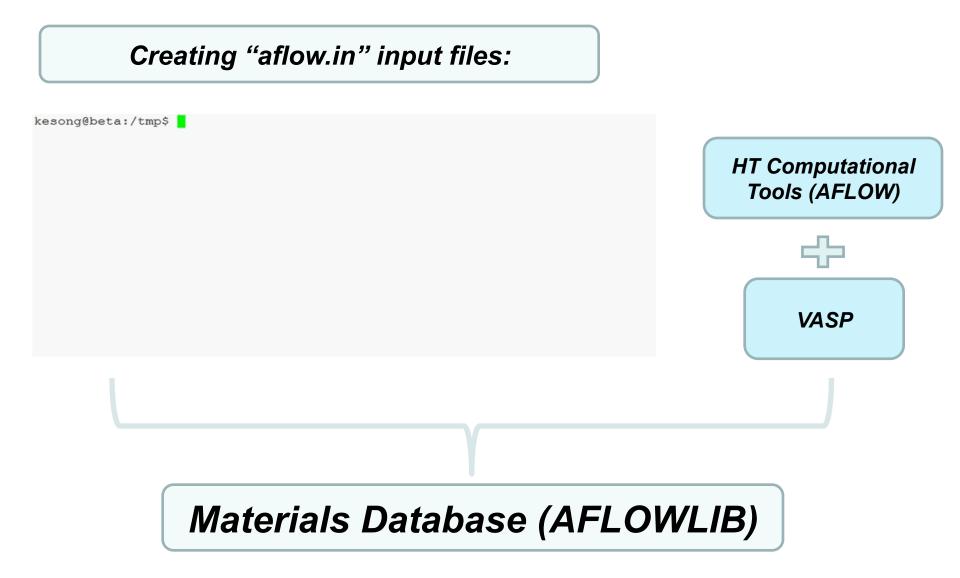
#### Comp. Mat. Sci. 49, 299-312 (2010)

#### ELECTRONIC PROPERTIES

Band Structure



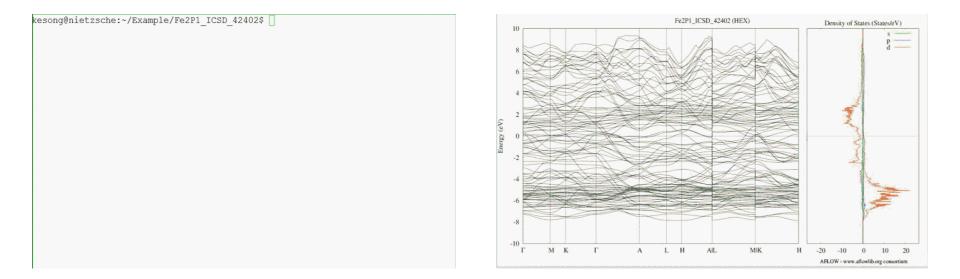
### **Repository of quantum mechanics calculations**


#### geometric#lershcedtectaicseatehp(with farchatiseten)ergies (2)

| ▲ <b>Name</b> [1]                              | ICSD<br>Number<br>[1] | Bravais<br>Lattice | Number<br>of<br>Atoms | < <b>P</b> n>/L<br>(µW/cmK <sup>2</sup> nm)<br>[4] | < <b>P</b> <sub>11</sub> >/L<br>(µW/cmK <sup>2</sup> nm)<br>[4] | <p<sub>n2&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | <p<sub>n3&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | <p<sub>p&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | <p<sub>p1&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | < <b>P</b> <sub>p2</sub> >/L<br>(µW/cmK <sup>2</sup> nm)<br>[4] | < <b>P</b> p3>/L<br>(µW/cmK <sup>2</sup> r<br>[4] |         | Sp<br>(μV/K)<br>[4] |
|------------------------------------------------|-----------------------|--------------------|-----------------------|----------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|---------|---------------------|
| F <sub>3</sub> Fe <sub>1</sub> K <sub>1</sub>  | 15424                 | CUB<br>(Cubic)     | 5                     | 0.15                                               | 0.15                                                            | 0.15                                                       | 0.15                                                       | 2.17                                                      | 2.17                                                       | 2.17                                                            | 2.17                                              | -116.36 | 91.29               |
| F <sub>3</sub> Fe <sub>1</sub> Rb <sub>1</sub> | 49586                 | CUB<br>(Cubic)     | 5                     | 0.24                                               | 0.24                                                            | 0.24                                                       | 0.24                                                       | 1.50                                                      | 1.48                                                       | 1.51                                                            | 1.51                                              | -91.73  | 91.04               |
| Fe <sub>1</sub> La <sub>1</sub> O <sub>3</sub> | 29118                 | CUB<br>(Cubic)     | 5                     | 0.31                                               | 0.31                                                            | 0.31                                                       | 0.31                                                       | 2.00                                                      | 2.00                                                       | 2.00                                                            | 2.00                                              | -139.02 | 92.92               |
| Ag <sub>2</sub> Fe                             | $_1$ S $_4$ Sn $_1$   |                    | 42534                 | BC                                                 | (Tetragonal)                                                    |                                                            | 8                                                          | 121 (I-                                                   | 42m)                                                       | tI16                                                            |                                                   | 4.77    |                     |

### magnetic properties (if you want rare parth free magnets/spintronics)

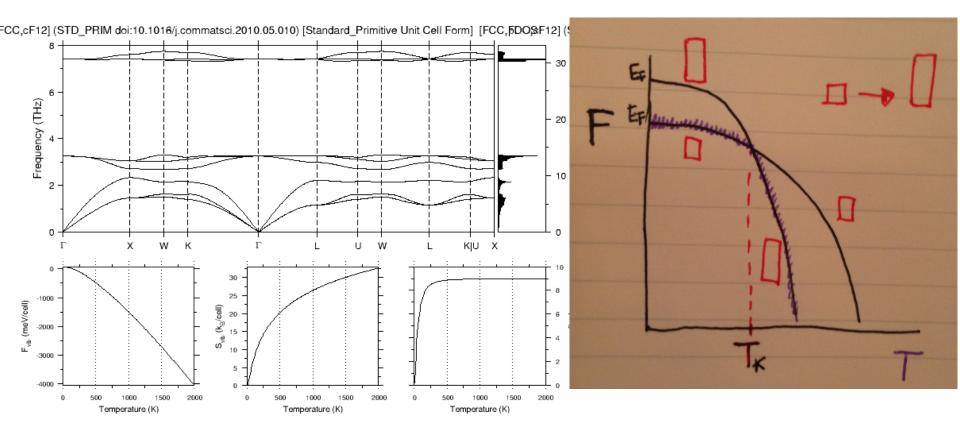
| <b>▲Name</b> [1]                                               | ICSD<br>Number<br>[1] | Bravais<br>Lattice    | Number of<br>Atoms | Mo     | gnetic<br>ment<br>tom) [5] |      | Spi<br>Polariz<br>(1/ator | ation | Spin Decomposition (µB)                           |                                                   | (µв)            |         |  |
|----------------------------------------------------------------|-----------------------|-----------------------|--------------------|--------|----------------------------|------|---------------------------|-------|---------------------------------------------------|---------------------------------------------------|-----------------|---------|--|
| Ag <sub>1</sub> Fe <sub>1</sub> O <sub>2</sub>                 | 2786                  | HEX<br>(Hexagonal)    | 8                  | 1      | .25                        |      | 0.0                       | 0     | {0.039,                                           | {0.039,0.039,4.303,4.303,0.258,0.258,0.258,0.258} |                 |         |  |
| Ag <sub>1</sub> Fe <sub>1</sub> O <sub>2</sub>                 | 31919                 | RHL<br>(Rhombohedral) | 4                  | 1      | .25                        |      | 0.0                       | 0     |                                                   | {0.039,4.303,0.258,0.258}                         |                 | 58}     |  |
| Ag <sub>2</sub> Fe <sub>1</sub> S <sub>4</sub> Sn <sub>1</sub> | 42534                 | BCT (Tetragonal)      | 8                  | 0      | ).50                       |      | 0.0                       | 0     | {0.016,0.016,3.631,0.024,0.024,0.024,0.024,0.016} |                                                   | 24,0.024,0.016} |         |  |
| F <sub>2</sub> Fe <sub>1</sub>                                 | 9166                  | TET (Tetragonal) 6    | 2.63<br>(I)        | 4.46 0 | 0.49                       | 0.48 | 190.80                    | 5.47  | 388.39                                            | 7.15                                              | 15.23           | 2.86700 |  |


### **Automatic Generation of Databases**



AFLOWLIB.ORG: a distributed materials properties repository from HT ab initio calculations, Comp. Mat. Sci. 58, 227 (2012)

## Automatic data/visualization analysis


## Extract general materials properties: structural, electronic, magnetic properties...



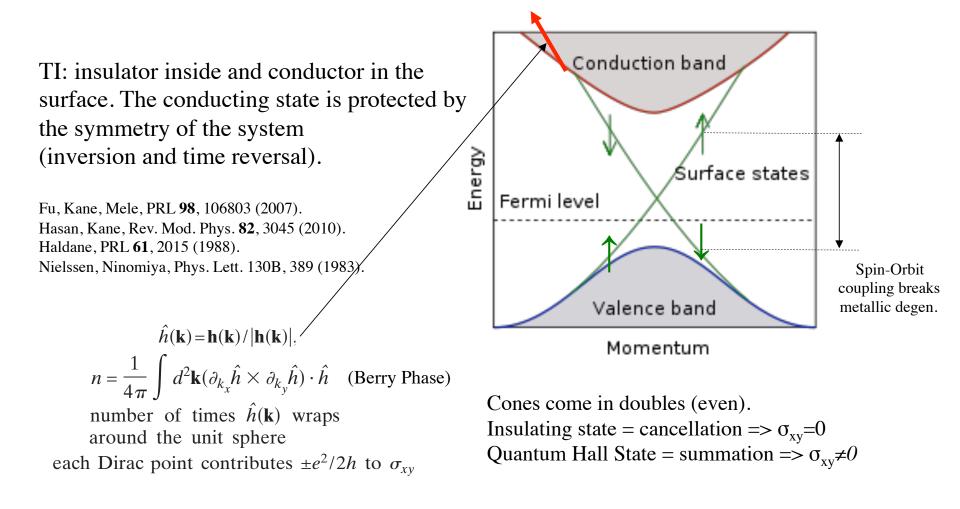
### Develop new high-throughput programs based on the desired materials properties

AFLOW: an automatic framework for high-throughput materials discovery, Comp. Mat. Sci. 58, 218-226 (2012)

### Vibrational Free energy

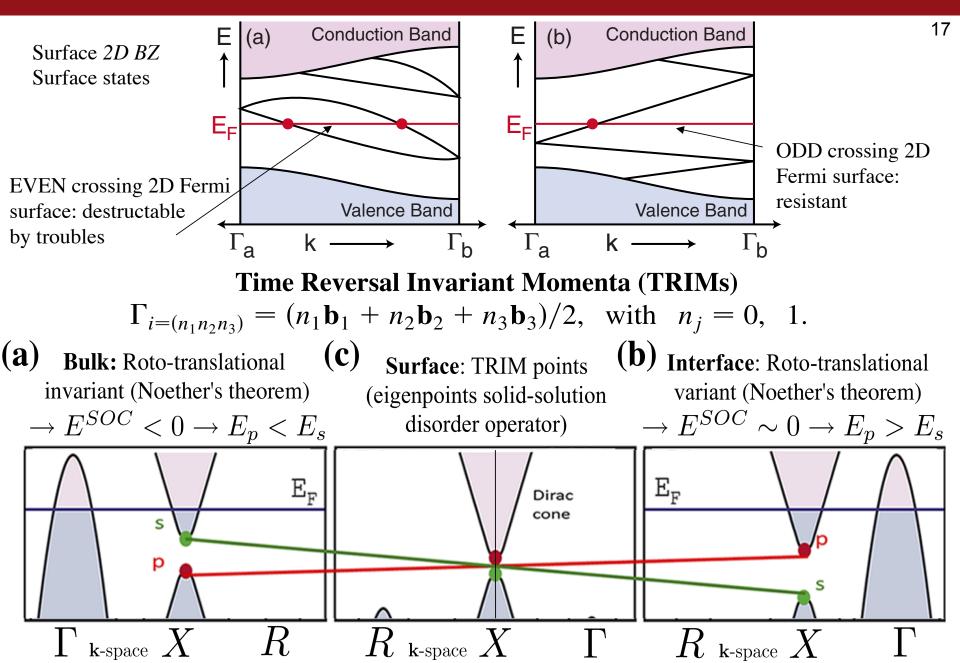


AFLOW: an automatic framework for high-throughput materials discovery, Comp. Mat. Sci. 58, 218-226 (2012)


## **EXAMPLE:** Topological Insulators

#### Table 1 | Examples of descriptors introduced in the literature. Nature Mater. 12, 191 (2013)

| Problem                                                                                                                     | Combination of materials properties (gene)                                                                                                                                                                                                                                                | Descriptor                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Structure stability: convex hull of an alloy system                                                                         | Formation enthalpy ( $H_f$ ) as a function of concentration ( $x$ ) and the enthalpies ( $H$ ) of $A$ and $B$ .                                                                                                                                                                           | $H_{f}(x) = H(A_{1-x}B_{x}) - (1-x)H(A) - xH(B)$                                                                |
| Phase stability in off-lattice alloys<br>PRL <b>91</b> , 135503 (2003)                                                      | Spectral decomposition of alloy vector-energies ( $E_{n,p}$ , <i>n</i> -rows = species, <i>p</i> -columns = configurations) with principal-component-analysis coefficients ( $\alpha_i$ ) and truncation error ( $\epsilon(d)$ ) (ref. 3).                                                | $E_{n,p} \simeq \alpha_1 E_{n,1} + \dots + \alpha_{p-1} E_{n,p-1} + \epsilon(d)$                                |
| Nanosintered thermoelectrics<br>PRX 1, 021012 (2011)                                                                        | Ratio of the average power factor ( $$ ) to the grain size (L) (ref. 15).                                                                                                                                                                                                                 | $\hat{\chi}_{\text{thermo}} \equiv \frac{\langle P \rangle}{L}$                                                 |
| Topological insulators (epitaxial growth)<br>Nature Mater. <b>11</b> , 614 (2012)                                           | Variational ratio of spin-orbit distortion versus non-spin-orbit derivative strain ( $E_k^{\text{SOC}}$ , $E_k^{\text{noSOC}}$ , spin/no spin-orbit bandgaps at $k$ , $a_0$ lattice) <sup>16</sup> .                                                                                      | $\hat{\chi}_{\text{TI}} = - \frac{E_k^{\text{SOC}}(a_0)/a_0}{\delta E_k^{\text{noSOC}}(a)_0/\delta a_0 _{a_0}}$ |
| Power conversion efficiency of a solar cell<br>(spectroscopic limited maximum efficiency)<br>PRL <b>108</b> , 068701 (2012) | Ratio of the maximum output power density ( $P_m$ ) to the incident solar nergy density ( $P_{in}$ ) — a function ( $\eta$ ) of the radiative electron-hole recombination current ( $f_r$ ) and the photon absorptivity ( $\alpha(E)$ ) — versus condgap energy ( $E_g$ ) <sup>62</sup> . | $\eta(\alpha(E), f_r) = P_m / P_{in}; E_g$                                                                      |
| Non-proportionality in scintillators<br>IEEE Trans. Nucl. Sci. <b>56</b> , 2989 (2009)                                      | Maximum mematch between effective masses of electrons ( $m_e$ ) and holes ( $m_h$ ) <sup>73</sup> .                                                                                                                                                                                       | $\hat{\chi}_{np} = \max\left(\frac{m_{\rm e}}{m_{\rm h}}, \frac{m_{\rm h}}{m_{\rm e}}\right)$                   |
| Morphotropic phase boundary<br>piezoelectrics<br>PRB <b>84</b> , 014103 (2011)                                              | Energy proximity between tetragonal, rhombohedra and rotational distortions ( $\Delta E_p$ ). Angular poordinate ( $\alpha_{AB}$ ) of the energy minimum in the A-B off-centerings energy map for $ABO_3$ systems <sup>79</sup> .                                                         | $\Delta E_{\rm p} \le 0.5  {\rm eV}$<br>$\alpha_{AB} \approx 45^{\circ}$                                        |
|                                                                                                                             |                                                                                                                                                                                                                                                                                           |                                                                                                                 |


## **EXAMPLE:** Topological Insulators

16

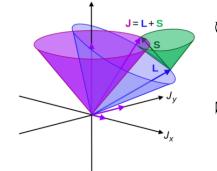


top. insul.

### EXAMPLES: going alloys and going surfaces



## EXAMPLE: plain of action

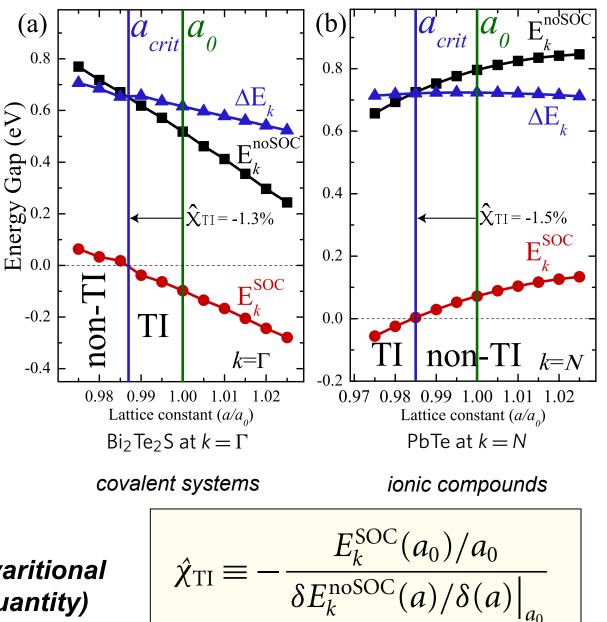

- Scan the aflowlib.org library
- Need of a **DESCRIPTOR** (need to grow... epixially).
- search for combination of heavy metals (potential strong spin-orbit coupling)
- search for ideal band structures with appropriate gaps
- calculate band structure with LS (thousand of compounds)
- calculate the bands for surfaces to see localized conducting surface stares
- usually they contain Bi and/or Sb, Te, Pb.

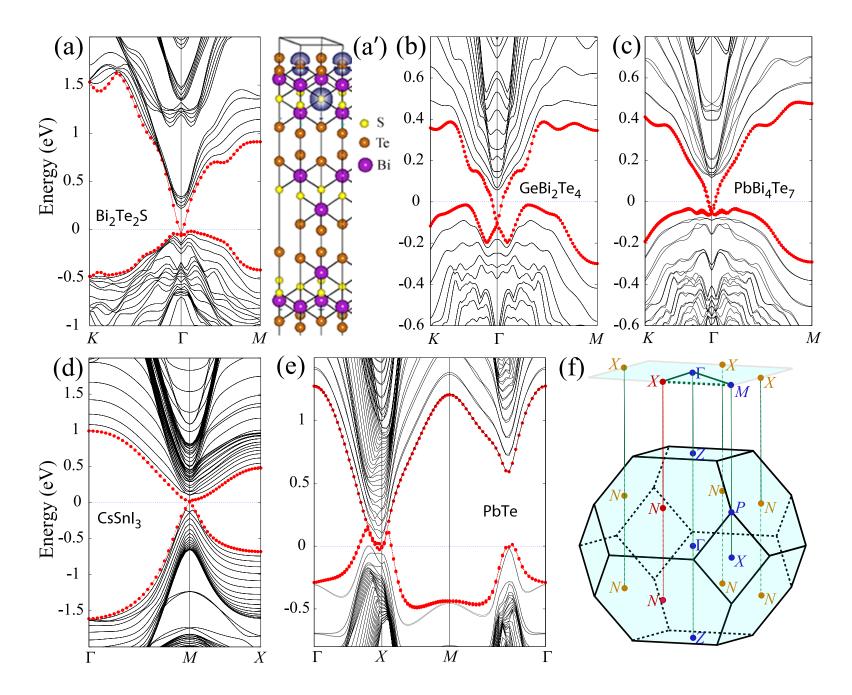
nature ARTICLES PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NMAT3332

# A search model for topological insulators with high-throughput robustness descriptors

Kesong Yang<sup>1</sup>, Wahyu Setyawan<sup>2</sup>, Shidong Wang<sup>1</sup>, Marco Buongiorno Nardelli<sup>3,4</sup> and Stefano Curtarolo<sup>1,4,5</sup>\*

## Let`s precess, epitaxially !





- *α*) SPIN orbit calculations are expensive
- $\beta$ ) LS due to electrons

precessing near cores

- $\gamma$ )  $E^{soc}$ - $E^{noSOC}$  ~ const
- $\delta$ ) simulated epitaxial strain with  $E^{noSOC}$

### robustness descriptor varitional ("quasi-meaningful" quantity)



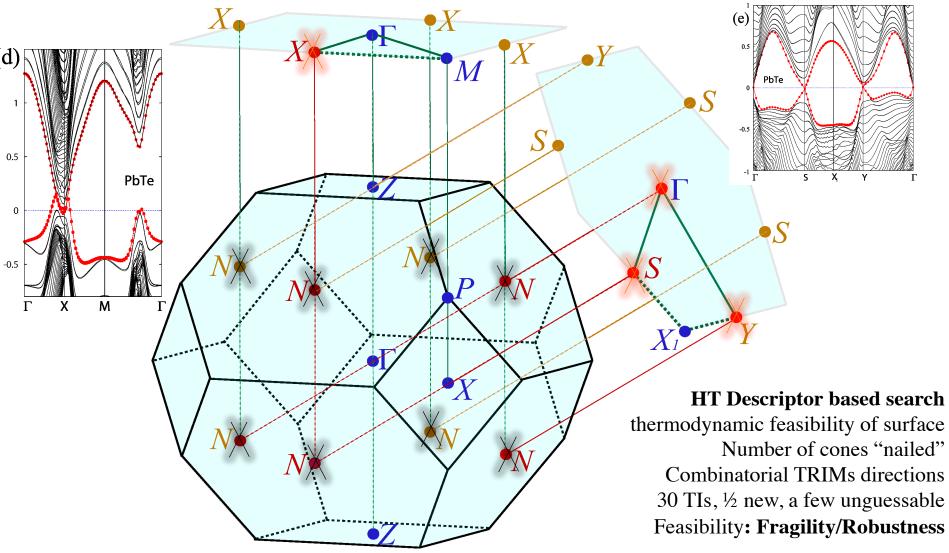


## *New compounds: tern. halides: Cs{Sn,Pb,Ge}{Cl,Br,I}<sub>3</sub>*

| Bulk                                         |       |         |                   |         |                                                       |                                                      | Simulated epitaxial growth (a optimized, c/a free) |                            |                                            |                           |                                            |                           |              |                                |        |            |
|----------------------------------------------|-------|---------|-------------------|---------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------|--------------------------------------------|---------------------------|--------------------------------------------|---------------------------|--------------|--------------------------------|--------|------------|
| Compound                                     |       |         | Pearson<br>symbol |         | Exp.<br><i>a</i> <sub>0</sub> , <i>c</i> <sub>0</sub> | DFT<br><i>a</i> <sub>0</sub> , <i>c</i> <sub>0</sub> | Pearson<br>symbol                                  |                            | a <sub>crit</sub><br>(Å)                   | E <sup>SOC</sup><br>'ref' | Ref.<br>lattice                            | E <sup>SOC</sup><br>'ref' |              | $\frac{\Delta E_k}{(a_0,c_0)}$ | ~      |            |
| Sb <sub>2</sub> Te <sub>2</sub> S            | R3m   | -       | hR5               | $rhl_1$ | -                                                     | 4.192<br>31.001                                      | hR5                                                | rhl₁<br>(0001)             | 1.006a <sub>0</sub><br>0.993c <sub>0</sub> | -0.106                    | 1.019 <i>a</i> 0<br>0.975c0                | 0.106<br>(D)              | Γ (1)        | 0.21                           | 0.043  | 0.6<br>PF  |
| Bi <sub>2</sub> Te <sub>2</sub> S<br>Fig. 2a | RĪm   | 617050  | hR5               | rhl₁    | 4.33<br>30.07                                         | 4.297<br>31.513                                      | hR5                                                | rhl <sub>1</sub>           | 0                                          | -0.089                    | 0                                          | 0.089<br>(D)              | Г (1)        | 0.62                           | -0.089 |            |
| SnSb <sub>2</sub> Te <sub>4</sub>            | R3m   | 30392   | hR7               | rhl₁    | 4.312<br>41.72                                        | 4.389<br>42.347                                      | hR7                                                | rhl₁<br>(0001)             | 0.999a <sub>0</sub><br>0.998c <sub>0</sub> | -0.065                    | 1.011a <sub>0</sub><br>0.984c <sub>0</sub> | 0.065<br>(D)              | Z(1)         | 0.22                           | 0.013  | -0.<br>P   |
| PbSb <sub>2</sub> Te <sub>4</sub>            | R3m   | 250250  | hR7               | rhl₁    | 4.35<br>41.712                                        | 4.413<br>42.792                                      | hR7                                                | rhl <sub>1</sub><br>(0001) | 0.988a <sub>0</sub><br>1.011c <sub>0</sub> | -0.017                    | a <sub>0</sub><br>c <sub>0</sub>           | 0.017<br>(D)              | <i>Z</i> (1) | 0.35                           | -0.017 | —1.:<br>I  |
| PbBi <sub>4</sub> Se <sub>7</sub>            | P3m1  | ref. 49 | hP12              | hex     | 4.25<br>22.68                                         | 4.216<br>23.839                                      | hP12                                               | hex<br>(0001)              | 1.018a <sub>0</sub><br>0.971c <sub>0</sub> | -0.016                    | 1.023a <sub>0</sub><br>0.966c <sub>0</sub> | 0.016<br>(D)              | A(1)         | 0.41                           | 0.128  | 2.3<br>PF  |
| CsSnCl₃                                      | Pm3̄m | 28082   | cP5               | cub     | 5.504<br>5.504                                        | 5.618<br>5.618                                       | tP5                                                | tet<br>(001)               | 0.951a <sub>0</sub><br>1.022c <sub>0</sub> | -0.281                    | 0.936a <sub>0</sub><br>1.209c <sub>0</sub> |                           | A(1)         | 0.34                           | 0.646  | -4.9<br>HF |
| CsPbCl₃                                      | Pm3̄m | 29072   | cP5               | cub     | 5.605<br>5.605                                        | 5.733<br>5.733                                       | tP5                                                | tet<br>(001)               | 0                                          | -0.450                    | 0                                          | 0.354                     | A(1)         | 1.11                           | 1.073  | -8.6<br>HF |
| CsGeBr₃                                      | Pm∃m  | 80320   | cP5               | cub     | 5.36<br>5.36                                          | 5.603<br>5.603                                       | tP5                                                | tet<br>(001)               | 0.955a <sub>0</sub><br>1.022c <sub>0</sub> | -0.055                    | 0.952 <i>a</i> 0<br>1.023c0                | 0.026<br>(I)              | A(1)         | 0.16                           | 0.591  | -4.5<br>HF |
| CsSnBr₃                                      | Pm3̄m | 4071    | cP5               | cub     | 5.795<br>5.795                                        | 5.884<br>5.884                                       | tP5                                                | tet<br>(001)               | 0.972 <i>a</i> 0<br>1.010 <i>c</i> 0       | -0.099                    | 0.965a <sub>0</sub><br>1.013c <sub>0</sub> | 0.099<br>(D)              | A(1)         | 0.34                           | 0.288  | -2.8<br>PF |
| CsPbBr₃                                      | Pm3̄m | 29073   | cP5               | cub     | 5.874<br>5.874                                        | 5.993<br>5.993                                       | tP5                                                | tet<br>(001)               | 0.934a <sub>0</sub><br>1.024c <sub>0</sub> | -0.120                    | 0.926a <sub>0</sub><br>1.027c <sub>0</sub> | 0.120<br>( D)             | A(1)         | 1.11                           | 0.641  | -6.6<br>HF |
| CsSnl₃<br>Fig. 2d                            | Pm3m  | 69997   | cP5               | cub     | 6.219<br>6.219                                        | 6.272<br>6.272                                       | tP5                                                | tet<br>(001)               | 0.993a <sub>0</sub><br>1.002c <sub>0</sub> | -0.335                    | 0.960 <i>a</i> 0<br>1.013 <i>c</i> 0       | 0.169<br>(I)              | A(1)         | 0.39                           | 0.070  | -0.7<br>PF |
| SnTe                                         | Fm3̄m | 52489   | cF8               | fcc     | 4.471<br>6.323                                        | 4.528<br>6.404                                       | tl4                                                | bct <sub>2</sub><br>(001)  | 1.027 <i>a</i> 0<br>0.998c0                | -0.058                    | 1.010 <i>a</i> 0<br>0.999c0                |                           | N (4)        | 0.15                           | -0.107 | 2.7<br>VR  |

novel ternary halides

> Properties of bulk structure: compound (\* indicates experimental validation), space group, ICSD number<sup>31</sup>, Pearson symbol, Bravais lattice<sup>39</sup>, experimental and DFT equilibrium lattices *a*, *c* in (Å). Properties under the simulated epitaxial growth condition: Pearson symbol, Bravais lattice with conventional cleavage Miller indices, critical value for band inversion ( $a_{crit}$ ), SOC band energy difference ( $E_k^{SOC}$  (*ref.*)) at the TRIM with the reference lattice, reference lattice, SOC band-gap at the reference lattice (direct/indirect) ( $E_g^{SOC}$  (*ref.*)), TRIMs having band inversion with multiplicity<sup>39</sup>, SOC energy-gap discrepancy ( $\Delta E_k$ ) at the *ab initio* equilibrium lattice, SOC band energy difference ( $E_k^{SOC}$  ( $a_0$ )) at the TRIM with the *ab* initio equilibrium lattice, HT-descriptor ( $\hat{\chi}_{T1}$ ). The labels below  $\hat{\chi}_{T1}$  indicate: F(ragile), R(robust), VR(very robust), PF(potentially feasible), and HF(hardly feasible) (structural and electronic data is available by following the links listed in the Supplementary Information Extended Table).


if  $E_k^{\text{SOC}}(a_0) \leq 0$ , **robustness**:  $|\hat{\chi}_{\text{TI}}| \leq 1\% \Rightarrow$ fragile,  $1\% < |\hat{\chi}_{\text{TI}}| \leq 2\% \Rightarrow$ robust,  $2\% < |\hat{\chi}_{\text{TI}}| \Rightarrow$ very-robust.

if  $E_k^{\text{SOC}}(a_0) > 0$ , **feasibility**:  $|\hat{\chi}_{\text{TI}}| \leq 3\% \Rightarrow \text{potentially-feasible},$  $3\% < |\hat{\chi}_{\text{TI}}| \Rightarrow \text{hardly-feasible}.$ 

21

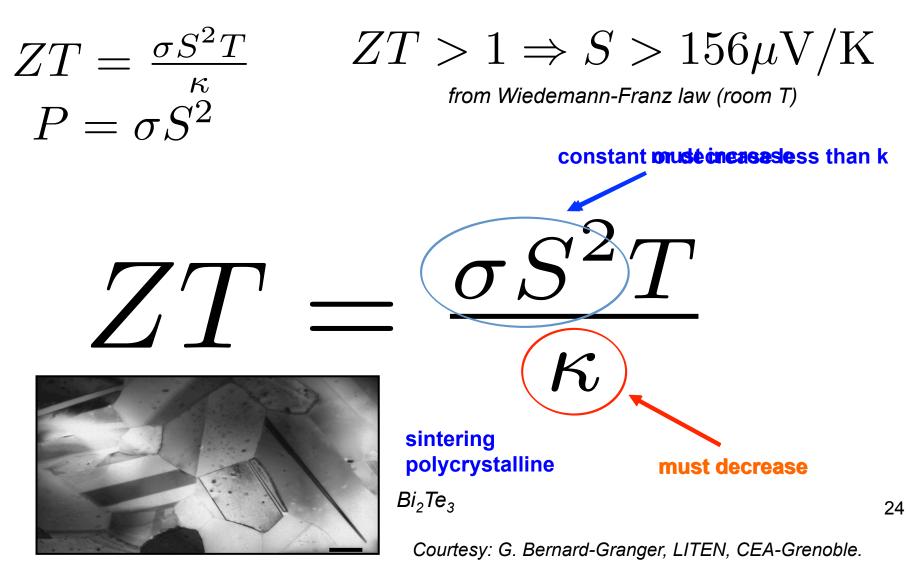
## **EXAMPLE:** Topological Insulators

Projects on surfaces by aligning semicones and checking thermodynamics of planes



Yang, Setyawan, Buongiorno Nardelli, Curtarolo: High-Throughput Descriptor for Novel Topological Insulators,<br/>Nature Materials, 11(7), 614-619 (2012) DOI: 10.1038/nmat3332

## **EXAMPLE:** Thermoelectrics


without the constant relaxation time approximation

#### Table 1 | Examples of descriptors introduced in the literature. Nature Mater. 12, 191 (2013)

| Problem                                                                                                             | Combination of materials properties (gene)                                                                                                                                                                                                                                                | Descriptor                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Structure stability: convex hull of an alloy system                                                                 | Formation enthalpy ( $H_f$ ) as a function of concentration (x) and the enthalpies (H) of A and B.                                                                                                                                                                                        | $H_{f}(x) = H(A_{1-x}B_{x}) - (1-x)H(A) - xH(B)$                                                                |
| Phase stability in off-lattice alloys<br>PRL <b>91</b> , 135503 (2003)                                              | Spectral decomposition of alloy vector-energies ( $E_{n,p}$ , <i>n</i> -rows = species, <i>p</i> -columns = configurations) with principal-component-analysis coefficients ( $\alpha_i$ ) and truncation error ( $\epsilon(d)$ ) (ref. 3).                                                | $E_{n,p} \simeq \alpha_1 E_{n,1} + \dots + \alpha_{p-1} E_{n,p-1} + \epsilon(d)$                                |
| Nanosintered thermoelectrics<br>PRX 1, 021012 (2011)                                                                | Ratio of the average power factor ( $\langle P \rangle$ ) to the grain size (L) (ref. 15).                                                                                                                                                                                                | $\hat{\chi}_{\text{thermo}} \equiv \frac{\langle P \rangle}{L}$                                                 |
| Topological insulators (epitaxial growth)<br>Nature Mater. <b>11</b> , 614 (2012)                                   | Variational ratio of spin-orbit distortion versus non-spin-orbit derivative strain ( $E_k^{\text{SOC}}$ , $E_k^{\text{noSOC}}$ , spin/no spin-orbit bandgaps at $k$ , $a_0$ lattice) <sup>16</sup> .                                                                                      | $\hat{\chi}_{\text{TI}} = - \frac{E_k^{\text{SOC}}(a_0)/a_0}{\delta E_k^{\text{noSOC}}(a)_0/\delta a_0 _{a_0}}$ |
| Power conversion efficiency of a solar cell<br>(spectroscopic limited maximum efficiency)<br>PRL 108, 068701 (2012) | Ratio of the maximum output power density ( $P_m$ ) to the incident solar nergy density ( $P_{in}$ ) — a function ( $\eta$ ) of the radiative electron-hole recombination current ( $f_r$ ) and the photon absorptivity ( $\alpha(E)$ ) — versus condgap energy ( $E_g$ ) <sup>62</sup> . | $\eta(\alpha(E), f_r) = P_m / P_{in}; E_g$                                                                      |
| Non-proportionality in scintillators<br>IEEE Trans. Nucl. Sci. <b>56</b> , 2989 (2009)                              | Maximum mematch between effective masses of electrons ( $m_{\rm e}$ ) and holes ( $m_{\rm h}$ ) <sup>75</sup> .                                                                                                                                                                           | $\hat{\chi}_{np} = \max\left(\frac{m_{\rm e}}{m_{\rm h}}, \frac{m_{\rm h}}{m_{\rm e}}\right)$                   |
| Morphotropic phase boundary<br>piezoelectrics<br>PRB <b>84</b> , 014103 (2011)                                      | Energy proximity between tetragonal, rhombohedra and rotational distortions ( $\Delta E_p$ ). Angular poordinate ( $\alpha_{AB}$ ) of the energy minimum in the A-B off-centerings energy map for $ABO_3$ systems <sup>79</sup> .                                                         | $\Delta E_{\rm p} \le 0.5  {\rm eV}$ $\alpha_{AB} \approx 45^{\circ}$                                           |
|                                                                                                                     |                                                                                                                                                                                                                                                                                           |                                                                                                                 |

## **EXAMPLE:** Thermoelectricity

Thermoelectrics: convert flow of electronic entropy in electronic current



thermoelectrics

## **EXAMPLE:** Thermoelectricity

25

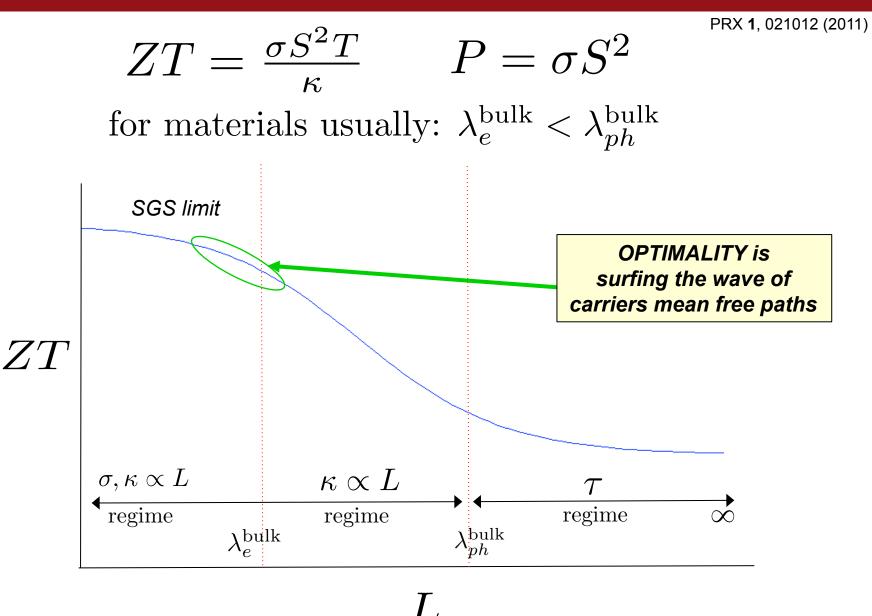
$$ZT = \frac{\sigma S^2 T}{\kappa}$$
  $P = \sigma S^2$ 

Sintered compounds have diffusive scattering for carriers (similar diffusive model of phonon transport [1])

Then mean free path is of the order of the grain:  $\lambda \simeq L$  (so we can play with L)

From the Constant Relaxation Time Approximation (CRTA) to Constant Mean Free Path Approximation (CMFPA) [2,3]

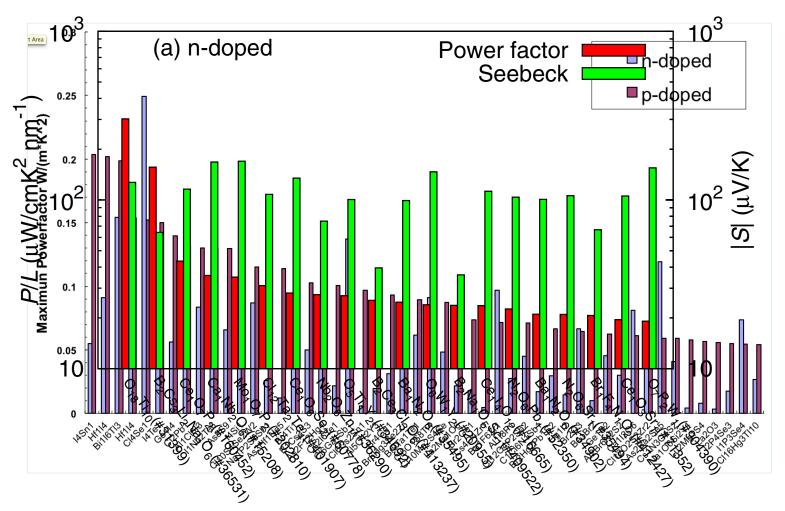
[1] PRB 67, 054302 (2003), JAP 93, 793 (2003), RMP 61, 605 (1989), PRB 48, 16373 (1993)
[2] JAP 108, 124306 (2010)
[3] PRX 1, 021012 (2011)


thermoelectrics

## **Constant Mean Free Path Approximation**

PRX 1, 021012 (2011)

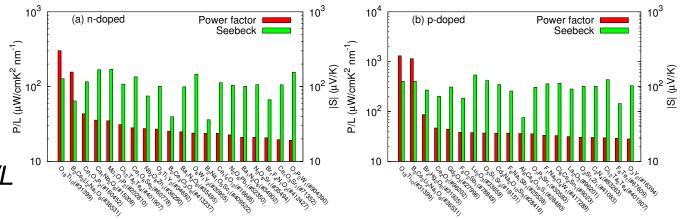
$$\begin{split} ZT &= \frac{\sigma S^2 T}{\kappa} \qquad P = \sigma S^2 \\ \text{for materials usually: } \lambda_e^{\text{bulk}} < \lambda_{ph}^{\text{bulk}} \\ \textbf{THREE SCENARIOS versus L} \\ \textbf{1. BIG GRAINS} \\ \lambda_e^{\text{bulk}} < \lambda_{ph}^{\text{bulk}} < L \implies \{\sigma, \kappa\} \text{ need } \tau \text{ \& phons } \Rightarrow ZT \\ \textbf{2. MEDIUM GRAINS} \\ \lambda_e^{\text{bulk}} < L < \lambda_{ph}^{\text{bulk}} \implies \kappa \propto L \implies ZT \propto 1/L \\ \textbf{3. TINY GRAINS} \\ L < \lambda_e^{\text{bulk}} \implies \sigma, \kappa \propto L \implies ZT \sim const \implies P \propto L \\ \text{Small grain size (SGS) limit} \end{split}$$


## **Constant Mean Free Path Approximation**



## thermoelectricity

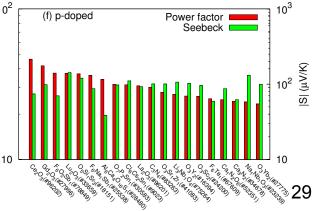
### Calculation of the power factor, $S^2\sigma/L$ for ~13,000 compounds


Boltzmann transport equation solved inside AFLOW



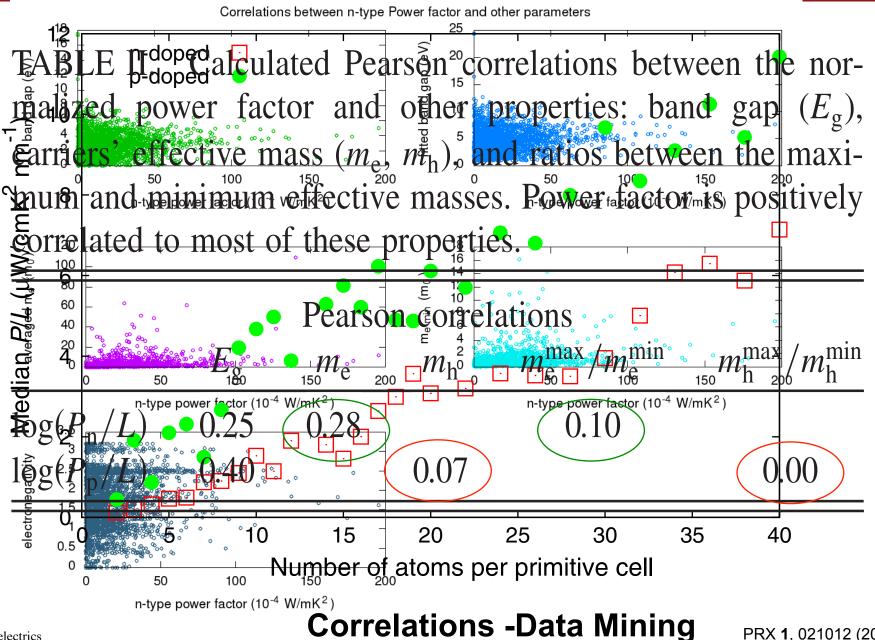
## power factor


For sintered, depends on directions, project on principal axes


 $X_{thermo} = <P > /L$ 



|                                                |                       |                    |                       |                                                    | 10 <sup>3</sup> (c) n-d                                         | loped                                                           | Power factor E                                             | 10 <sup>3</sup>                                           | 10 <sup>4</sup> (d) p                                      | -doped                                                     | Power factor<br>Seebeck                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------|-----------------------|--------------------|-----------------------|----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ▲ <b>Name</b> [1]                              | ICSD<br>Number<br>[1] | Bravais<br>Lattice | Number<br>of<br>Atoms | < <b>P</b> n>/L<br>(μW/cmK <sup>2</sup> nm)<br>[4] | < <b>P</b> <sub>n1</sub> >/L<br>(µW/cmK <sup>2</sup> nm)<br>[4] | < <b>P</b> <sub>n2</sub> >/L<br>(µW/cmK <sup>2</sup> nm)<br>[4] | <p<sub>n3&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | <p<sub>p&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | <p<sub>p1&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | <p<sub>p2&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | <p<sub>p3&gt;/L<br/>(µW/cmK<sup>2</sup>nm)<br/>[4]</p<sub> | Sn<br>(μV/K)<br>[4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sp<br>(μV/K)<br>[4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| F <sub>3</sub> Fe <sub>1</sub> K <sub>1</sub>  | 15424                 | CUB<br>(Cubic)     | 5                     | 0.15                                               | 0.15                                                            | 0.15                                                            | 0.15                                                       | 2.17                                                      | 2.17                                                       | 2.17                                                       | 2.17                                                       | -116.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| F <sub>3</sub> Fe <sub>1</sub> Rb <sub>1</sub> | 49586                 | CUB<br>(Cubic)     | 5                     | 0.24                                               | 0.24                                                            | 0.24                                                            | 0.24                                                       | 1.50                                                      | 1.48                                                       | 1.51                                                       | 1.51                                                       | -91.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fe <sub>1</sub> La <sub>1</sub> O <sub>3</sub> | 29118                 | CUB<br>(Cubic)     | 5                     | 0.31                                               | 0.31                                                            | 0.31                                                            | 0.31                                                       | 2.00                                                      | 2.00                                                       | 2.00                                                       | 2.00                                                       | -139.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                |                       |                    |                       |                                                    |                                                                 |                                                                 |                                                            |                                                           | <sup>VI</sup> *8,744<br>399                                |                                                            |                                                            | 10 00 4 1 (4 0<br>4 3 6 3 0<br>0 0 0 1 (4 3 6 3<br>0 0 0 1 (4 3 6 3<br>1 3 7<br>1 3 7 | 1.44.7<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2.45.9<br>2. |







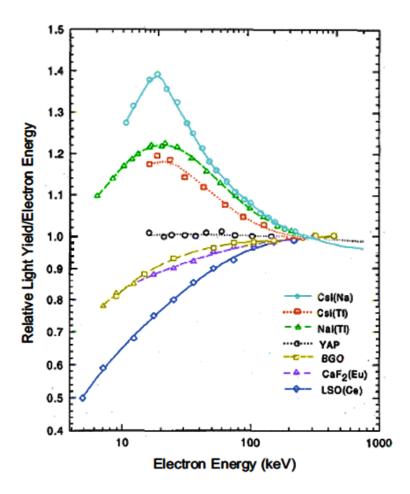

PRX 1, 021012 (2011)

## EXAMPLE 2: thermoelectricity: correlations



PRX 1, 021012 (2011)

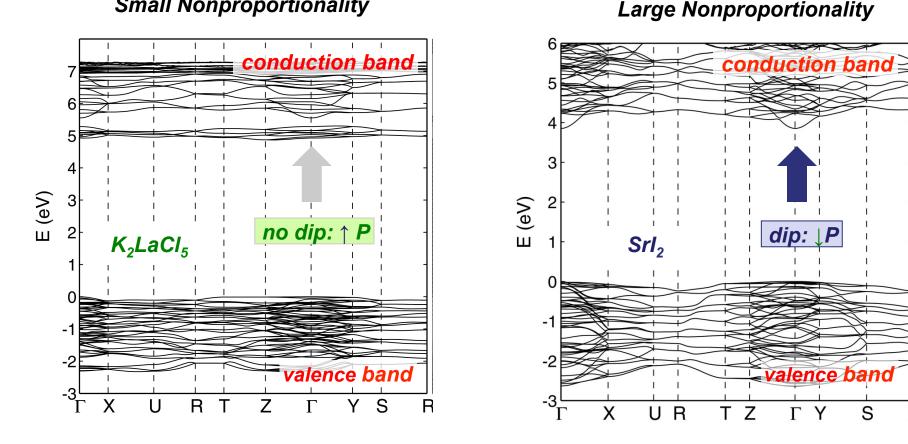
30


## **EXAMPLE Scintillator Materials**

#### Table 1 | Examples of descriptors introduced in the literature. Nature Mater. 12, 191 (2013)

| Problem                                                                                                             | Combination of materials properties (gene)                                                                                                                                                                                                                                                          | Descriptor                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Structure stability: convex hull of an alloy system                                                                 | Formation enthalpy ( $H_f$ ) as a function of concentration (x) and the enthalpies (H) of A and B.                                                                                                                                                                                                  | $H_{f}(x) = H(A_{1-x}B_{x}) - (1-x)H(A) - xH(B)$                                                                |
| Phase stability in off-lattice alloys<br>PRL <b>91</b> , 135503 (2003)                                              | Spectral decomposition of alloy vector-energies ( $E_{n,p}$ , <i>n</i> -rows = species, <i>p</i> -columns = configurations) with principal-component-analysis coefficients ( $\alpha_i$ ) and truncation error ( $\epsilon(d)$ ) (ref. 3).                                                          | $E_{n,p} \simeq \alpha_1 E_{n,1} + \dots + \alpha_{p-1} E_{n,p-1} + \epsilon(d)$                                |
| Nanosintered thermoelectrics<br>PRX 1, 021012 (2011)                                                                | Ratio of the average power factor ( $\langle P \rangle$ ) to the grain size (L) (ref. 15).                                                                                                                                                                                                          | $\hat{\chi}_{\text{thermo}} \equiv \frac{\langle P \rangle}{L}$                                                 |
| Topological insulators (epitaxial growth)<br>Nature Mater. <b>11</b> , 614 (2012)                                   | Variational ratio of spin-orbit distortion versus non-spin-orbit derivative strain ( $E_k^{\text{SOC}}$ , $E_k^{\text{noSOC}}$ , spin/no spin-orbit bandgaps at $k$ , $a_0$ lattice) <sup>16</sup> .                                                                                                | $\hat{\chi}_{\text{TI}} = - \frac{E_k^{\text{SOC}}(a_0)/a_0}{\delta E_k^{\text{noSOC}}(a)_0/\delta a_0 _{a_0}}$ |
| Power conversion efficiency of a solar cell<br>(spectroscopic limited maximum efficiency)<br>PRL 108, 068701 (2012) | Ratio of the maximum output power density ( $P_m$ ) to the incident solar<br>energy density ( $P_{in}$ ) — a function ( $\eta$ ) of the radiative electron-hole<br>recombination current ( $f_r$ ) and the photon absorptivity ( $\alpha(E)$ ) —<br>versus bandgap energy ( $E_g$ ) <sup>62</sup> . | $\eta(\alpha(E), f_r) = P_m / P_{in}; E_g$                                                                      |
| Non-proportionality in scintillators<br>IEEE Trans. Nucl. Sci. <b>56</b> , 2989 (2009)                              | Maximum mismatch between effective masses of electrons ( $m_{\rm e}$ ) and holes ( $m_{\rm h}$ ) <sup>75</sup> .                                                                                                                                                                                    | $\hat{\chi}_{np} = \max\left(\frac{m_{\rm e}}{m_{\rm h}}, \frac{m_{\rm h}}{m_{\rm e}}\right)$                   |
| Morphotropic phase boundary<br>piezoelectrics<br>PRB 84, 014103 (2011)                                              | Leargy proximity between tetragonal, rhombohedra and rotational distortion. ( $\Delta E_p$ ). Angular coordinate ( $\alpha_{AB}$ ) of the energy minimum in the A-B off-centorings energy map for $ABO_3$ systems <sup>79</sup> .                                                                   | $\Delta E_{\rm p} \le 0.5  {\rm eV}$ $\alpha_{AB} \approx 45^{\circ}$                                           |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                                                                                 |

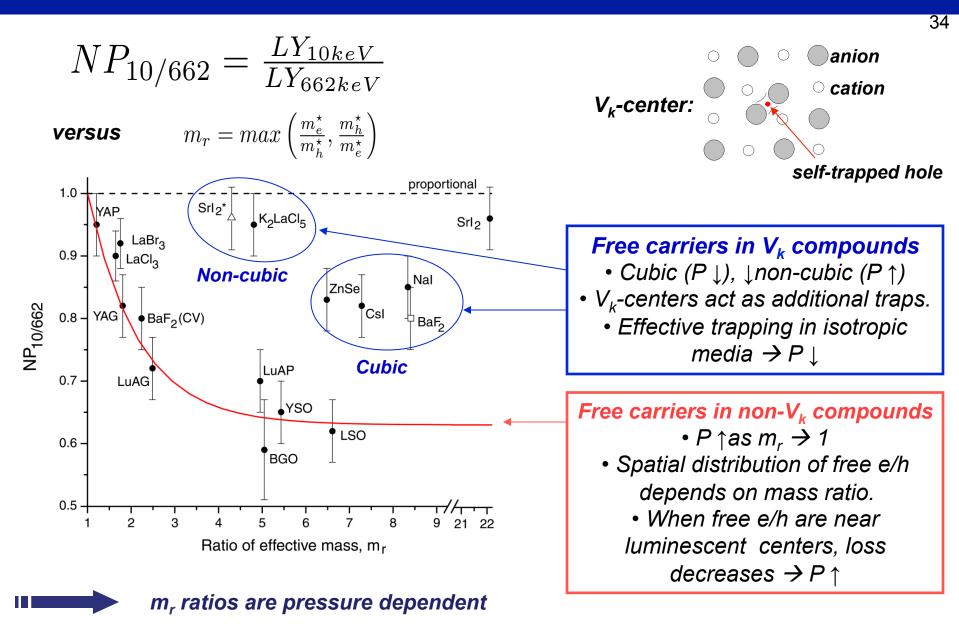
## Introduction: Nonproportionality


Previous studies revealed variations in nonproportionality for compounds with:



the same crystal-structure Ce: YAIO<sub>3</sub> vs. Ce:LuAIO<sub>3</sub> cation substitutions Ce:  $(Gd_{1-x}Lu_x)_2SiO_5$ dopants Nal vs TI:Nal crystal quality defects and inhomogeneities cation valence in multi-cation compounds isovalent cations (ex. Ce:Y<sup>3+</sup>Al<sup>3+</sup>O<sub>3</sub>) have better linearity than aliovalent cations  $(Ce: Y^{3+}_{2}Si^{4+}O_{5})$ temperature

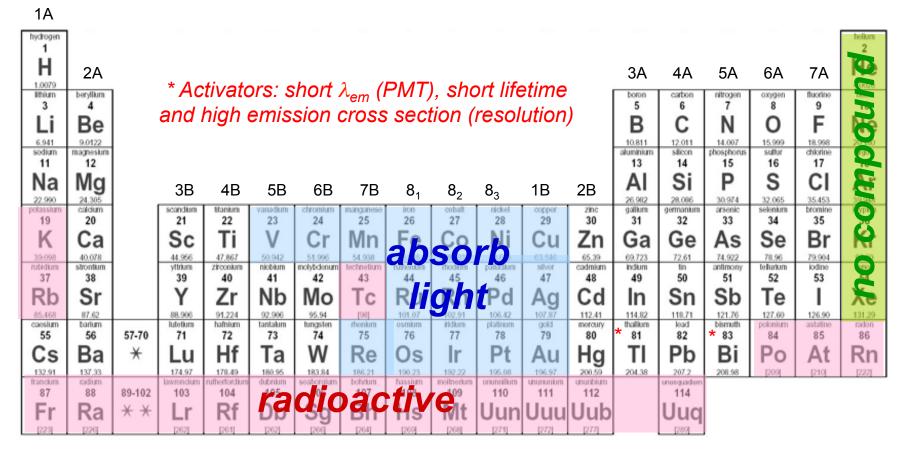
### Modeling: Nonproportionality & Band structure

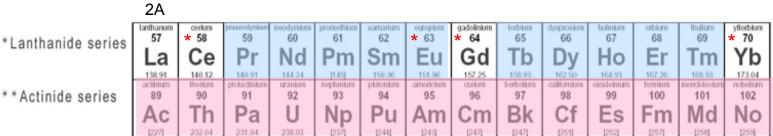

Small Nonproportionality



Presence of dip:  $\downarrow m_e \rightarrow P \downarrow$ 

R


## **EXAMPLE:** Modeling: NP vs. Effective ratio




scintillators IEEE Trans. Nucl. Sci. 56, 2989 (2009).

cub: Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub>(BGO), Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>(YAG), Lu<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>(LuAG), BaF<sub>2</sub>, ZnSe, Csl, Nal, BaHfO<sub>3</sub>, SrHfO<sub>3</sub>, LiBaF<sub>3</sub>. hex: LaBr<sub>3</sub>, LaCl<sub>3</sub> ort: Srl<sub>2</sub>, YAIO<sub>3</sub>(YAP), LuAIO<sub>3</sub>(LuAP), K<sub>2</sub>LaCl<sub>5</sub>(KLC) mcl: Y<sub>2</sub>SiO<sub>5</sub>(YSO), Lu<sub>2</sub>SiO<sub>5</sub>(LSO)

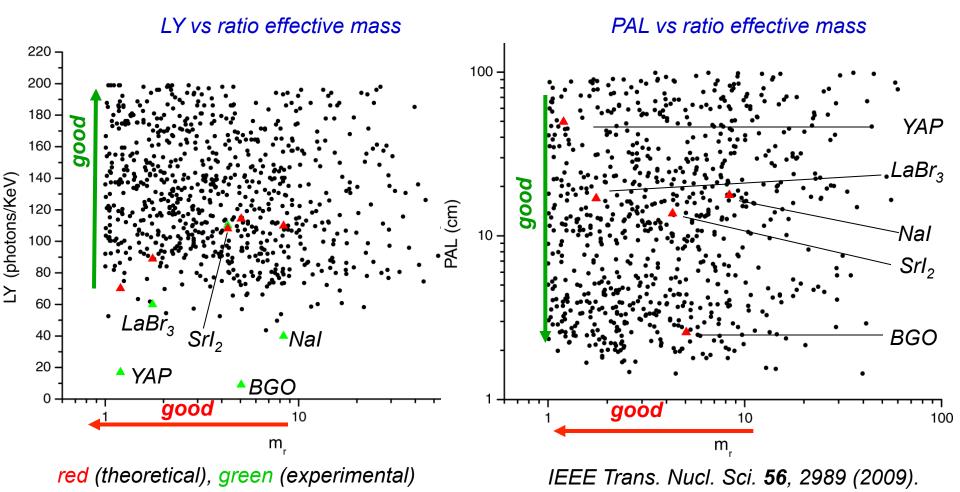
## Host material selection





## **Combinatorial optimization**

Photoelectric attenuation length


 $PAL=FM/\rho\sigma_{pe}$ 

Ortiz et al., Comp. Mat. Sci. 44, 1042 (2009).

Theoretical light yield

 $LY=E_{\gamma}/2.5 E_{g}$ 

Dorenbos, NIM 486, 208 (2002)



scintillators

## the Future is online

### taking the bull from the horns

- Thermodynamics analysis
- Electronic structure analysis

## **POSTDOC OPENINGS [~many]**

- Transparent Cond.
- HT Corrosion
- Applied Math. & Information theory



### stefano@duke.edu

#### **SPONSORS:**

## *DOD, DOE, NIST, OSTP, DHS, BYU, TERAGRID, ORNL* ACKNOWLEDGEMENTS:

G. Hart, O. Levy, W. Setyawan, R. Taylor, N. Mingo,

S. Wang, Z. Wang, K. Yang, M. Buongiorno Nardelli, S. Sanvito.

