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QMC:  Variational wave functions, imaginary time projection

3DEG, Na:

Spectral properties (2DEG): Single-particle: n(k), Z, and m*

Density fluctuations: S(k,τ), ωp

Compton profile, n(k), and Z

Finite Size Corrections



Ground state energies and wavefunctions for 
homogeneous (extended) Fermi systems (T=0)

Variational principle for ground state of a finite system:

- include explicit many body correlations in functional form
- stochastic improvement via Projector Monte Carlo (DMC,...) 

(fixed node approximation to avoid sign problem)

Improve many-body trial wavefunctions 

Thermodynamic limit: 

Hamiltonian for N non-relativistic Fermions: ground state energy E0:

more general observables:
g(r) ∼

∫
dr1

∫
dr2δ(r − |r1 − r2)|ΨT (r1, r2, . . . rN)|2 (1)

nk ∼
∫

dr1

∫
dr′1e

ik·(r1−r′
1)Ψ∗

T (r′1, . . . rN)ΨT (r1, . . . rN) (2)

1

momentum distribution: ❏ Excitation-energies (m*...)

❏ Dynamical correlations
(S(k,ω), energy loss ...)

ΨT (r1, r2, . . . , rN )



Many-body trial wavefunctions for 
Fermi systems 

Antisymmetric part: Symmetric correlations:

determinant of single particle orbitals 
A(R)=detki φk(ri)

Jastrow potential:

orbitals must be plane waves (homogeneity)

Fermi liquid structure k≤kF

single particle excitations k>kF

M. H, D.M. Ceperley, C. Pierleoni, and K. Esler, Phys. Rev. E 68, 046707 (2003)
M.H., B. Bernu, D. Ceperley Phys. Rev. B 74, 104510 (2006)

electronic screening
collective excitations (plasmon)

M. Lee, K. Schmidt, M.Kalos, and G.Chester, Phys. Rev. Lett. 46, 728 (1981).improvements using
backflow and

many-body correlations



Exact calculations for finite systems (N≈50-100)

(2DEG: homogeneous electron gas in 2D)
use exact projection in imaginary time (no fixed-node):
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∆N !
(

πr2
s

4N

)1/4

(1)

d2σ

dΩdω2
=

(
dσ

dΩ

)

Th

S(k, ω) (2)

S(k, ω) ! Jk̂ (ω/k − k/2) (3)

Jk(q) =
∫

d3pn(p)δ(p · k̂− q) (4)

J(q) =
∫ ∞

|q|
d2pn(p) (5)

qi = ri +
∑

j "=i

(ri − rj)b([ri − rj]) (6)

U2 =
∑

i<j

u([ri − rj]) (7)

Ψ(β) = exp[−βH]ΨT (8)

1

with different trial wavefunctions to estimate precision

fixed node approximation: 
 - numerically stable evaluation of

g(r) ∼
∫

dr1

∫
dr2δ(r − |r1 − r2)|ΨT (r1, r2, . . . rN)|2 (1)

nk ∼
∫

dr1

∫
dr′1e

ik·(r1−r′
1)Ψ∗

T (r′1, . . . rN)ΨT (r1, . . . rN) (2)

Ψ(β) = exp [−βHFN ] ΨT (3)

1

 - fixed node energies variational 



Thermodynamic limit extrapolation: Energies

phenomenological:  extrapolate always bigger systems with PBC...  

S. Chiesa, D.M. Ceperley, R.M. Martin, and M. H., Phys. Rev. Lett. 97, 076404 (2006)

E(L), E(2L), E(4L),...,   =>   E(∞) L: size of system

or:

finite size errors are integration errors

 singularities/non-analytic points dominate size errors



Thermodynamic limit extrapolation: 
Potential Energy - Coulomb singularity (3D)

Coulomb-potential:
e2

r
→ vk =

4πe2

k2

Sum rules: lim
k→0

S(k) =
!k2

2mωp

(plasma frequency)ωp =
√

nvkk2/m

Size corrections for potential energy:

→ ωp

4N
V∞ − VN =

∫ 2π/L

0

d3k

(2π)3
vkS(k)

What is with kinetic energy?



long range Jastrow potential

uk ∝
1
k2

Thermodynamic limit extrapolation: 
Kinetic Energy - Shell effects and Coulomb singularity

Coupling constant integration:

E =
∫ e2

0

dẽ2

ẽ2
V (ẽ)

kinetic and potential energy 
corrections strongly related!

V (ẽ) =
1

2V
∑

k

4πẽ2

k2
S(k; ẽ2)

M.H., B. Bernu, D. Ceperley, J. Phys.: Conf. Ser. 321 012020 (2011)

Analyze wave function:

Ψ = det
ik

ϕk(ri) exp

[
−1

2

∑

k

ukρ−kρk

]

general analysis (RPA):

εk ≤ εkF

TwistAveragedBoundaryConditions ⇔ k-point average

GC -TABC: impose Fermi surface (N varies) ⇒kinetic energy corrections



Correcting Finite size errors: 

Fourier transform pair. By separating the L ! 0 and k ! 0
contributions from the two sums we get the expression for
the error

 

1

"2!#3
Z

""k#dk$
X

k!0

""k#
!

! ""0#
!

$
X

L!0

~""L#: (8)

One sets ""0# equal to the k ! 0 limit of 2!e2S"k#k$2 or
@2k2u"k#=4m for the leading order correction to the poten-
tial and kinetic energy, respectively.

We first apply these corrections to the electron gas
for which the small k limits of S"k# and u"k# are known
from the random-phase approximation as, respectively,
@k2=2m!p and 4!e2=@!pk2, where !p is the plasma
frequency. In our tests, the wave function had a
backflow-Jastrow form [11] and simulations were per-
formed in the grand-canonical ensemble with final energies
averaged over twist angles. Thanks to the translational
invariance of the Hamiltonian, the wave function factorizes
as exp"i!Pjrj=L#", where ", the periodic part, is invari-
ant in a finite pocket of k space around each twist angle. In
each pocket the energy dependence on ! is trivial and one
can exploit this fact to reduce the number of twist angles to
be the number of inequivalent pockets. This, together with
cubic symmetry, drastically reduces the number of needed
twist angles to between 20–200 for an unpolarized system
with N % 10–100. The leading order correction due to
long-range correlations to kinetic and potential energy is
given by #VN ! #TN ! @!p"4N#$1. Corrected and un-
corrected variational energies are shown in Fig. 2 for rs !
10. Diffusion Monte Carlo values are uniformly shifted to
lower energy by 0:6 mRyd=electron and show similar
behavior. One can see that the bias due to the small size

of the simulation cell is tremendously reduced, so that the
N ! 12 case is already satisfactory.

As a second example we considered the diamond struc-
ture of silicon at ambient pressure (rs ! 2:0). Calculations
were performed using the CASINO [12] code, a Slater-
Jastrow wave function, a Hartree-Fock pseudopotential
[13,14], and periodic boundary conditions. The orbitals
used for the trial function (Hartree-Fock) were from the
CRYSTAL98 code [15]. To eliminate the effects of momen-
tum quantization we used a correction based on the density
functional eigenvalues of those single-particle states peri-
odic in the simulation cell. Although this is quite common
practice, it represents an uncontrolled approximation and
results depend weakly on the functional employed (we
used the local density approximation). The parameters in
the Jastrow potential and a one-body term were optimized.
The two-particle Jastrow factor was made up by a spherical
short range part and a plane wave expansion including 3
shells of k points for a total of 11 parameters [16]. One
needs the plane wave expansion to accurately reproduce
the behavior of the optimal Jastrow factor at small k,
especially in the case of small simulation cells. To further
eliminate errors in the wave function we correct the diffu-
sion Monte Carlo value of SN"k# by SN"k#DMC $
SN"k#VMC which leads to an estimate correct to second-
order in the wave function. The behavior of SN"k# and
uN"k# for different N is reported in Fig. 3.

For Eq. (8) we assumed S"k# ! 1$ exp"$#k2# and
u"k# ! 4!a&k$2 $ "k2 ' a$1#$1( [17]. When k is ex-
pressed in atomic units, the optimal value of # and a
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FIG. 2 (color online). Electron gas variational energies per
particle at rs ! 10 using periodic boundary condition (PBC)
and twist-averaged boundary condition (TABC). #N ) #TN '
#VN ! @!p=2N (see text for the definition of #TN and #VN).
Error bars are smaller than symbol size.
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FIG. 3 (color online). Structure factor (left) and Jastrow po-
tential (right) for diamond silicon at ambient pressure. The
continuous lines are fit to the data (see text). The Jastrow
potential shows a k$2 divergence at small k that was not
explicitly imposed but obtained through energy variance mini-
mization using the CASINO code. The smallest cell is the con-
ventional fcc cubic cell of diamond (32 electrons). The two
intermediate ones are, respectively, 2* 2* 2 and 3* 3* 3
supercells of the primitive cell (8 electrons). The largest one is
a 2* 2* 2 supercell of the conventional cubic cell.
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Momentum distribution n(k):
Periodic vs Twist Averaged Boundary Conditions

GC: Grand canonical twist averaging (k-point sampling)
Slater det. with plane-wave occupation up to kF for each twist
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g(r) ∼
∫

dr1

∫
dr2δ(r − |r1 − r2)|ΨT (r1, r2, . . . rN)|2 (1)

nk ∼
∫

dr1

∫
dr′1e

ik·(r1−r′
1)Ψ∗

T (r′1, . . . rN)ΨT (r1, . . . rN) (2)

1

momentum distribution:

Fermi liquid structure:

Z: renormalization factor

gk: continuous function

nk = Zθ(kF − |k|) + gk



Momentum distribution n(k) (2DEG)
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Theory of finite size effects:

Slater determinant:
single particle modes

Jastrow potential:
collective modes

neglect mode-coupling (RPA):
analytical extrapolation for N=∞ possible

n(k)

k/kF

(exact for longrange properties)

n(k≈kF): strong size effects!



Renormalization factor Z (2DEG):
jump at kF: correcting size effects

finite size correcions:

leading order explicitly given:
(agrees with

 integration error 

of RPA formulas)
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(

πr2
s
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Tables III and IV. For both the paramagnetic and ferromag-
netic HEGs, discarding data far from kF has little effect on
the calculated effective mass, until the remaining data points
are all sufficiently close to kF that either the pathological
behavior of the DMC energy band in this region starts to
dominate or there are insufficient data to perform an accurate
fit.

Another possible reason for not reproducing the finite-size
errors in the effective mass predicted by Holzmann et al.
might simply be that some of their assumptions are invalid.
We have reproduced their O!N−1/4" scaling of the finite-size
error in the renormalization factor !the discontinuity Z in the
momentum density at the Fermi edge" in VMC calculations,
as shown in Fig. 10. However, when an electron is added,
there are two contributions to the momentum density: a peak
of weight Z at the momentum at which the electron is added
and a smeared-out background of weight 1−Z.2 Together,
these two contributions to the change in the momentum den-
sity are responsible for the change in the kinetic energy when
the electron is added, i.e., for the kinetic contribution to the
energy band. Examples of the changes in the VMC momen-
tum density that result from adding or removing electrons
from different k are shown in Fig. 11. It can be seen that the
smeared-out background depends on the k at which the elec-
tron is added, its average tending to increase with k. The
finite-size error in the weight Z of the peak is equal and
opposite to the finite-size error in the weight 1−Z of the
background. The finite-size error in the derivative of the en-
ergy band due to the background therefore tends to cancel
the finite-size error due to the peak. So it is not clear that the
O!N−1/4" finite-size error in the renormalization factor should
result in an O!N−1/4" error in the gradient of the energy band
and hence effective mass.

IV. CONCLUSIONS

In summary, we have used DMC to calculate the energy
band of the interacting 2D HEG, and hence we have obtained
the quasiparticle effective mass. Our ferromagnetic and para-
magnetic effective masses are in agreement with the experi-
mental results of Padmanabhan et al.6 and Tan et al.,5 respec-
tively. In particular, our data confirm that the effective mass
of the paramagnetic HEG increases when the density is low-
ered, while the effective mass of the ferromagnetic HEG
decreases.

ACKNOWLEDGMENTS

We acknowledge financial support from the Leverhulme
Trust, Jesus College, Cambridge, and the UK Engineering

TABLE III. Effective mass m! versus range of k values used to
fit the energy band for a 114-electron paramagnetic HEG at rs
=5 a.u.

Range No. pts in fit
m!

!a.u."

0.0!k /kF!1.33 17 1.21!2"
0.23!k /kF!1.26 15 1.18!2"
0.33!k /kF!1.20 13 1.14!2"
0.47!k /kF!1.17 11 1.12!3"

TABLE IV. Effective mass m! versus range of k values used to
fit the energy band for a 101-electron ferromagnetic HEG at rs
=5 a.u.

Range No. pts in fit
m!

!a.u."

0.0!k /kF!1.18 12 0.706!9"
0.18!k /kF!1.12 10 0.72!1"
0.35!k /kF!1.06 8 0.722!9"
0.5!k /kF!0.95 6 0.686!8"
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FIG. 10. !Color online" VMC renormalization factor Z against
number of electrons N for paramagnetic 2D HEGs at rs=10 a.u.

0 0.5 1 1.5 2 2.5
k / kF

-0.02

0

0.02

0.04

ρ(
k)

-ρ
G

S(k
)

Addition, 1st shell
Addition, 2nd shell
Addition, 3rd shell
Subtraction, 1st shell
Subtraction, 2nd shell
Subtraction, k = 0

FIG. 11. !Color online" VMC momentum density "!k" relative
to the ground-state momentum density "GS!k" for different excita-
tions to a paramagnetic 58-electron HEG at rs=10 a.u. The mo-
mentum densities are averaged over reciprocal-lattice vectors of the
same length, so the height of the spike at the #k# at which the
electron is added looks smaller when there are many reciprocal-
lattice vectors with the same length as #k#.

QUANTUM MONTE CARLO CALCULATION OF THE ENERGY… PHYSICAL REVIEW B 80, 245104 !2009"

245104-7

See also:

M.H., B. Bernu, V. Olevano, R.M. Martin, D.M. Ceperley,  Phys. Rev. B 79, 041308(R) (2009) .

N.D. Drummond and R.J. Needs, 
Phys. Rev. B 80, 245104 (2009)



Effective mass m* (2DEG)

single particle/ hole excitations with momentum k and energy Ek

energy differences at kF gives effective mass m*:

big size effects, similar to Z, but more difficult!

0.00 0.01 0.02 0.03 0.04

0.6

0.7

0.8

1 / N

m
 /

 m
*
 

QMC

QMC corrected

Ek −
k2

2m
= 2kF

( m

m∗ − 1
)

(k − kF ) + . . .

≡ 2 major difficulties !

2 extrapolations:

● N→∞
● k→kF

non-analytic (log) behavior 
expected



Effective mass m* and Z in thermodynamic limit
comparision with RPA theories (2DEG)

M.H., B. Bernu, V. Olevano, R.M. Martin, D.M. Ceperley,  Phys. Rev. B 79, 041308(R) (2009) .
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disagreement for m* with N.D. Drummond and R.J. Needs, Phys. Rev. B 80, 245104 (2009) and PRB 87, 045131 (2013)



Imaginary Time Dynamics:
Density Fluctuations

=
∫ ∞

−∞
dω e−τωS(k, ω)

dynamic 
structure factor

Imaginary time correlations:

Usual fixed-node propagator (static nodes) gives wrong dynamics 

Use restricted path integral representation:

Correct dynamics if time-dependent nodes correct

S(k, τ) = 〈Ψ0|ρ−k e−τ(H−E0) ρk|Ψ0〉



Imaginary Time Dynamics: TEST
 Ideal Fermi gas
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Imaginary Time Dynamics (2DEG):
Plasmon Excitations

M.H., S. Moroni

2D electron gas: rs=10 (N=26):
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2

rs 1 2 3.99 5 10

E 1.173(2) 0.0039(1) -0.1555(1) -0.1520(1) -0.1071(1)

T 2.290(3) 0.6024(5) 0.1688(1) 0.1131(1) 0.0349(1)

V -1.116(1) -0.5985(1) -0.3243(1) -0.2651(1) -0.1421(1)

g(0) 0.268(3) 0.152(2) 0.057(2) 0.034(1) 0.0036(4)

n0 0.999 0.998 0.97 0.93 0.88

n2 0.038 0.066 0.12 0.098 0.21

n̄ 0.490 0.477 0.460 0.456 0.414

TABLE I: The total (E), potential (V ) and kinetic energy
(T ) per particle in Ry, and the contact value of the pair cor-
relation function g(0), all extrapolated to the thermodynamic
limit from unbiased RMC calculations with backflow (BF)
nodes. We further give parameters of the momentum distri-
bution at small k (n0, and n2) n(k → 0) = n0 − n2(k/kF )2,
and at kF : n̄ = [n(k+

F ) + n(k−F )]/2.

Within Variational Monte Carlo (VMC), the ground
state wave function is approximated by a trial wave
function, ΨT (R), whereas within projector Monte Carlo
methods, e.g. Diffusion Monte Carlo (DMC) or reptation
Monte Carlo (RMC), the trial state is improved using
Ψβ ∝ exp[−βH]ΨT ; this converges exponentially fast to
the true ground state for increasing projection time β.
To circumvent the so-called Fermion sign problem, cal-
culations are done within the fixed-node approximation,
introducing small systematic deviations from the exact
Fermion ground state [15]. Whenever the (approximate)
nodes of the system are described by a determinant of
single particle orbitals φn(r), the (fixed-node) ground
state wave function, ΨN (R), of N particles at positions
R ≡ {ri}, can be written as

ΨN (R) = DN exp [−UN ] , DN = det
nl

φn (rl +∇lWN )(1)

where WN and UN are generalized backflow and Jastrow
potentials[16] respectively.

From an approximate ground state wavefunction,
ΨN (R), we obtain the reduced single particle density ma-
trix [17]

fN (r) = 〈F (R; r)〉N , F =
1
N

∑

i

ΨN (R : ri + r)
ΨN (R)

(2)

where R : ri +r indicates that the position of particle i is
displaced by r, and 〈. . . 〉N ≡

∫
dR . . . |ΨN |2/Q with Q ≡∫

dR|ΨN |2 playing the role of a partition function. The
Fourier transform of fN (r) directly yields the momentum
distribution, nN

k , of the electrons per spin

nN
k =

1
2V

∫
dre−ik·rfN (r) (3)

where V is the volume.
The large variance of the estimator of the off-diagonal

density matrix, Eq. (2), makes precise calculations very

rs 1 2 3.99 5 10

BF-RMC 0.84(2) 0.77(1) 0.64(1) 0.58(1) 0.40(1)

SJ-VMC 0.894(9) 0.82(1) 0.69(1) 0.61(2) 0.45(1)

BF-VMC 0.86(1) 0.78(1) 0.65(1) 0.59(1) 0.41(1)

G0W0 [25] 0.859 0.768 0.646∗ 0.602 0.45

GW0 [26] 0.804 0.702∗

GW [27] 0.846 0.793∗

Lam [28] 0.896 0.814 0.615∗ 0.472

RPA[28] 0.843 0.700 0.442∗ 0.323

SJ-DMC [6] 0.952 0.889 0.725 0.593

TABLE II: Renormalization factor, Z, extrapolated to the
thermodynamic limit from unbiased RMC calculations with
backflow nodes (BF-RMC), together with SJ-VMC, and BF-
VMC results, compared with perturbative results from liter-
ature (literature values∗ are at rs = 4 instead of rs = 3.99).
Previous SJ-DMC results [6] used mixed estimators without
thermodynamic limit extrapolation.

time-consuming. To reduce the variance for homoge-
neous systems with plane wave orbitals: φn(r) ∝ eikn·r,
we separate the ideal gas density matrix, fid(r) =∑

n φ∗n(r)φn(0)/
∑

n |φn(0)|2, based on the estimator

Fid(R; r) =
1
N

∑

i

DN (R : ri + r;WN (R))
DN (R;WN (R))

(4)

where the determinants on the r.h.s. of Eq. (4) are eval-
uated using the backflow coordinates, WN (R), of the di-
agonal configuration R with un-displaced particle coor-
dinates. Expanding it around r = 0, we can explicitly
verify that fid(r) = 〈Fid(R; r)〉N , so that the F −Fid is a
reduced variance estimator[18] of the difference: fN−fid.

There is a problem with projecting methods to calcu-
late properties other than the energy. Forward walking
or reweighting methods based on using Ψβ in Eq. (2),
become very inefficient for long projection time, since
the variance increases exponentially with β. To avoid
this problem, mixed estimators, based on ΨβΨ0, are fre-
quently used but they can introduce a systematic bias.
Unbiased estimators for the pair correlation function,
potential and kinetic energy have been obtained within
RMC [12]. Based on a generalized partition function,
Q, we extend RMC to include sampling of off-diagonal
matrix elements [10]

Q =
∫

dR |Ψβ/2(R)|2

+
s

N

∑

i

∫
dr
V

∫ β

0

dτ

β

∫
dR|Ψβ−τ (R)Ψτ (R : ri + r)| (5)

where s is a parameter used to optimize the efficiency
(s = 0 corresponds to the usual diagonal RMC [12]).
Similar to the worm-algorithm used in continuous Path-
integral calculations [11], our calculations include moves

Quantitative agreement of QMC with G0W0 
over broad density region 1≤rs≤5...10)

renormalization factor Z

[25] L. Hedin, Phys.Rev. 139,  A796 (1965).
[26] U. von Barth, B. Holm, PRB 54, 8411 (1996).
[27] B. Holm, U. von Barth, PRB 57, 2108 (1998).
[28] J. Lam, PRB 3, 3243 (1971).
[6] G. Ortiz, P. Ballone, PRB 50, 1391 (1994).
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spherical Fermi surface: 

momentum distribution can be measured
 via inelastic X-ray scattering 

(Compton profile)

Na: very isotropic valence band 

valence electrons in Na ≈ 3DEG

anisotropies around kF <≈0.2%



Compton profile from inelastic X-ray scattering

scattering cross section: 

dynamic structure factor
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high energies (synchrotron): 
impulsive approximation 

Compton profile
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momentum distribution n(k) by differentiation

renormalization factor Z gives kink



Valence electron Compton profile of Na:
experiment

subtract contribution 
 of core electrons
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by changing the incident-photon energy E1 and observ-
ing the flux of scattered photons into a fixed scattering
angle 2! at a fixed energy E2. We used two different
configurations to verify the result in two independent
ways. In the first experiment (run 1), we used a single
Si(555) analyzer crystal, E2 ¼ 9:9 keV, 2! ¼ 147", and
E1 ¼ 9:9–11:0 keV. In the second experiment (run 2), two
Si(880) analyzers were used, with E2 ¼ 12:9 keV, 2! ¼
149", and E1 ¼ 12:9–14:0 keV. The sample was prepared
in a glovebox and transported to the beam line within an
argon atmosphere and pumped into a vacuum of
10#6 mbar. There was no observable degradation of the
sample during the experiment. The measured signal was
corrected for sample self-absorption as well as changes in
the incident-photon flux, and the spectra were measured
repeatedly to identify any possible instabilities during the
experiment. None were found and the spectra were finally
averaged.

The measured spectra as a function of energy transfer
are shown in Fig. 2. The Na L edges are seen at 30–60 eV,
andK edge at 1.07 keV. Since our interest is in the valence-
electron CP, the core contribution has to be subtracted first.
Since the impulse approximation is not valid for the core-
electron spectra in these experiments, we calculated them
with two independent methods: the quasi-self-consistent
field (QSCF) approximation [15] and the real-space mul-
tiple scattering approach with the FEFFQ code [16,17]. The
differences between the results of the two approaches are
negligible. The core contribution can then be reliably
subtracted from the experimental spectra. The spectra
can now be converted into the CP [18]; for each energy
transfer we can evaluate the scattering-electron momentum
component q, and the measured intensity is related to JðqÞ.

A finite experimental accuracy in the determination of q
will introduce a broadening of any sharp features in the
experimental data. This uncertainty is caused in the present
experiments by the spread of scattering angles of the
detected radiation, giving !q ¼ 0:018 a:u: (run 1) and

!q ¼ 0:027 a:u: (run 2) FWHM. Final-state effects
[19,20], i.e., the interaction of the scattering electron and
the rest of the electron gas, are known to cause further
broadening of the measured valence CPs. We calculated
the magnitude of this broadening [19], and found it to be
effectively an additional Gaussian smoothing of 0.08 a.u.
(run 1) and 0.03 a.u. (run 2) (FWHM). This combined with
the geometrical resolutions yields effective experimental
!q ¼ 0:08 a:u: (run 1) and 0.04 a.u. (run 2).
Results and discussion.—The result of the experiment

and analysis is the valence CP shown in Fig. 3. For a real
metal it generally deviates from the jellium parabola due to
two reasons: (i) correlation modifies the nðpÞ introducing
tails for p > pF, and (ii) electron-ion interaction modifies
the overall wave function and induces tails for p > pF due
to core orthogonalization and the high-momentum compo-
nents ~"G!0

#k . As discussed above, the valence-electron
wave function of Na is fully contained inside 1BZ and is
highly free-electron-like, with negligible high-momentum
components. The band structure only leads to small (&3%)
lowering of the momentum distribution for p < pF, as can
be seen in the difference between the ideal-Fermi-gas and
the LDA results in Fig. 1. Thus we can compare the
experimental nðpÞ to that of HEG after including these
corrections.
In Fig. 3, the FS can be directly seen as the discontinuity

of the valence CP derivative. From the experimental data
we deduce pF ¼ 0:49ð1Þ a:u: (LDA value 0.481 a.u.). The
best determination of $ is provided by linear fits to the
measured points in the immediate vicinity of pF. An inset
to Fig. 3 shows these fits, here for both negative and
positive q from run 2. The difference of the slopes for the
two sides gives $# ¼ 0:59ð7Þ and $þ ¼ 0:55ð7Þ, which
allows us to quote the average value as $Naexp ¼ 0:57ð7Þ.
The error bar is based on the statistical noise of JðqÞ and
the uncertainty of pF [cf. Eq. (2)]. Using the pure band-
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FIG. 2 (color online). The measured x-ray-scattering spectra
from Na as a function of energy transfer, for both experimental
runs. The experimental spectra consist of overlapping valence
and core contributions. Theoretical core contributions are shown
for both QSCF and FEFFQ treatments.
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FIG. 3 (color online). The experimental valence CPs (averaged
over q < 0 and q > 0), compared to the results of Eisenberger
et al. [22] and to the results of QMC SJ (q k ½100() and LDA
(orientational average). Inset: Zoom on the discontinuity (points)
and the linear fits to the CP around pF. Both runs give the same
result within the error bars, the fits shown here are from run 2.
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discontinuity in the slope at kF:
direct measurement of Z and kF 
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momentum distribution of Na
renormalization factor Z of 3DEG at rs=3.99

!"kðrÞ ¼
P

G
~!G
"ke

iðkþGÞr, where k is the crystal momen-
tum, " is the band index, and G are reciprocal lattice
vectors. For systems like Na with one valence band (" ¼
1) whose Fermi surface is entirely contained within the first
Brillouin zone (1BZ), the band structure reduces the dis-
continuity of the nðpÞ, # ¼ j ~!G¼0

"¼1;kF
j2 < 1. From a

density-functional theory calculation within the local-
density approximation (LDA) for Na, we obtain #NaLDA ¼
0:98ð1Þ. The calculated valence band is an almost perfect
parabola, its wave function is nearly isotropic, and its FS
deviates from a perfect sphere by only 0.2%, leading to a
further, albeit small, reduction of the discontinuity when
nðpÞ is orientationally averaged.

Many-body effects introduce a much larger reduction
of the discontinuity at the FS, known as the quasipar-
ticle renormalization factor ZkF

. Theoretical predictions
for ZkF

using different approximations range from 0.45 to
0.79 for the density considered (see Table I). In general,
ZkF

is related to the self-energy !";"ðk;!Þ via ZkF
¼

½1& @!1;1ðkF;!Þ=@!j!¼$F '&1, ! ¼ !e-e þ !e-ph con-
taining the electron-electron interactions !e-e and the
electron-phonon effects !e-ph. For HEG the discontinuity
in nðpÞ is #HEG ¼ ZkF . In a jelliumlike system such as Na,
band-structure effects and many-body correlations can be
factorized so that #Na ¼ j ~!G¼0

"¼1;kF
j2ZkF

with ZkF
very close

to the value for HEG at the same density, if phonon effects
can be neglected.

To determine ZkF
theoretically, we performed pseudo-

potential diffusion QMC [9,10] calculations of bulk so-
dium based on a Slater-Jastrow (SJ) wave function using
the QMCPACK code, and more precise calculations using
backflow (BF) for HEG. In addition, we have done a non-
self-consistent (one-shot) G0W0 calculation [2] starting
from LDA using the ABINIT code. Within both QMC and
G0W0 methods, pseudopotentials are used to describe the
core electrons, based on a regular static lattice for the ions,
neglecting effects due to electron-phonon coupling.

Whereas core correlation effects only give smooth correc-
tions that do not influence the value of the renormalization
factor, electron-phonon coupling may lead to a further
decrease of ZkF

. However, since the phonon Debye fre-
quency !D is small compared to the Fermi energy, the
main effects are expected only within a narrow momentum
region around pF, with %p=pF & !D=p

2
F ( 10&2, beyond

the resolution of the experiment. The static approximation
and the use of pseudopotential should thus be sufficient to
obtain the value of ZkF

, whereas they may be less accurate
to predict the CP itself.
Experiment.—A unique bulk-sensitive probe of the nðpÞ

is offered by Compton scattering of x rays [11]. The
experiment measures the spectra of x rays scattered by an
electron system. When the energy transferred to the elec-
tron is much larger than its binding energy, the so-called
impulse approximation is valid and the measured spectrum
is related to the CP, which in isotropic average normalized
to one electron is

JðqÞ ¼ 3

8&p3
F

Z
4&

d"
Z 1

jqj
pnðpÞdp: (1)

Here q is the component of the ground-state momentum of
the electron projected onto the scattering vector. Assuming
an isotropic system, nðpÞ can thus be extracted by a dif-
ferentiation of the CP,

nðpÞ ¼ & 2p3
F

3p

dJðqÞ
dq

!!!!!!!!q¼p
: (2)

For the noninteracting HEG the CP is an inverted parabola
JðqÞ ¼ 3

4p3
F
ðp2

F & q2Þ for q < pF and vanishes for q > pF.

Many-body effects promote a part of the electrons from
below to above pF. The CP, while being always continu-
ous, will have a discontinuity in the first derivative at pF.
Measuring the CP accurately allows the extraction of nðpÞ
by using Eq. (2). The determination of ZkF via x-ray
Compton scattering has been a long-standing goal of
many scientists [11]. The simultaneous requirements of
extremely high momentum resolution and statistical accu-
racy as well as difficulties in separating band-structure and
correlation effects have made such attempts difficult, lead-
ing to anomalously low values of, e.g., ZLi

kF
¼ 0:1ð1Þ for Li

(rs ¼ 3:25) [12]. Promising results were given for Al (rs ¼
2:07) [13] by comparisons with an analytical model of nðpÞ
with an adjustable ZkF [12], giving the best agreement with
ZAl
kF

( 0:7. This determination, however, assumed a spe-

cific shape of nðpÞ and thus was not model independent.
Our choice of a HEG-like system of Na combined with
ultrahigh resolution measurements allows us to accurately
determine the nðpÞ and ZNa

kF
in a model-independent way.

The experiments were performed at the beam line ID16
[14] of the European Synchrotron Radiation Facility on
polycrystalline Na. The spectrometer was based on a
Rowland circle with spherically bent analyzer crystals
with a Bragg angle of 89). The measurements were done

TABLE I. Our results for # and ZkF of Na and HEG at rs ¼
4:0: experimental value compared to G0W0, QMC SJ and QMC
BF. Various theoretical values of HEG from literature are also
quoted. [Effective-potential expansion (EPX), Fermi hypernetted
chain (FHNC).]

Technique #Na ZNa
kF

ZHEG
kF

Experiment 0.57(7) 0.58(7)
QMC SJ 0.68(2) 0.70(2) 0.69(1)
QMC BF 0.66(2)
G0W0 0.64(1) 0.65(1) 0.64 [2]
GW [6] 0.793
RPA (on shell) [4,5] 0.45
expS2 [4] 0.59
EPX [8] 0.61
Lam [5] 0.615
FHNC [7] 0.71
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renormalization factor in sodium. From an x-ray Compton-profile measurement of the valence-electron-

momentum density, we derive its discontinuity at the Fermi wave vector. This yields an accurate measure

of the renormalization factor that we compare with quantum Monte Carlo and G0W0 calculations

performed both on crystalline sodium and on the homogeneous electron gas.

DOI: 10.1103/PhysRevLett.105.086403 PACS numbers: 71.10.!w, 02.70.Ss, 71.20.Dg, 78.70.Ck

Introduction.—The homogeneous electron gas (HEG),
also known as jellium, is one of the most fundamental
models in condensed matter physics [1]. It is one of the
simplest many-body systems that can describe several
properties of real solids, especially the alkali metals. For
almost half a century, the accurate description of many-
body correlation effects has challenged quantum many-
body theory, and HEG is the canonical workbench to test
different theoretical methods [2–8]. Although the analytic
solution of the many-body problem in HEG is still un-
known, today quantum Monte Carlo (QMC) calculations
provide the most reliable results on, e.g., the correlation
energy. The situation is less clear concerning spectroscopic
quantities such as the momentum distribution nðpÞ. The
accuracy of the theoretical methods in this respect is not
well understood, with different approaches yielding a wide
range of results. This fundamental issue remains unre-
solved, mainly due to a lack of accurate and bulk-sensitive
experimental probes for comparison with theory.

Experimentally, one of nature’s closest realizations of
HEG is formed by the valence electrons in alkali metals,
especially Na. Here, we present very accurate experimental
and theoretical results on the electron-momentum distri-
bution of Na. The single occupied valence band of Na has
an almost spherical Fermi surface (FS), and its properties
in ambient conditions with a density parameter rs ¼ 3:99
can be directly compared with theoretical results on HEG.
In particular, we obtain a precise experimental reference
value for the quasiparticle renormalization factor ZkF ,
which characterizes the discontinuity of the momentum
distribution at the FS [1]. From the Compton profile (CP)
measured by inelastic x-ray scattering experiments on bulk
sodium, we derive nðpÞ and obtain ZNa

kF
¼ 0:58ð7Þ. Our

experiment provides a clear and direct observation of the
discontinuity at the FS.

We compare our experimental results to theoretical cal-
culations using QMC and G0W0 methods, for both HEG
and Na, including the electron-electron interaction and
band-structure effects. Our calculations confirm the jel-
liumlike behavior of Na and allow us to quantify the small
deviations from HEG. Finally, we compare the results with
other many-body approximations applied to HEG in litera-
ture [2–8]. Unless explicitly specified, we use atomic units
(a.u.).
Theory.—The momentum distribution per spin state

nðpÞ (see Fig. 1) is one of the basic many-body observables
where the Pauli principle for fermions is directly visible. It
is the probability to observe an electron with momentum p.
For a noninteracting Fermi gas at zero temperature, nðpÞ is
1 for p below the Fermi momentum pF and 0 above, i.e.,
nðpÞ ¼ !ðpF ! pÞ with a discontinuity " ¼ nðp!

F Þ !
nðpþ

F Þ ¼ 1 occurring at the FS. For a noninteracting crys-
talline system, the electrons occupy Bloch wave functions,
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FIG. 1 (color online). The momentum distribution of Na de-
termined by experiment, QMC SJ, G0W0, and LDA calculations.
The ideal-Fermi gas step function is also shown.
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body correlation effects has challenged quantum many-
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known, today quantum Monte Carlo (QMC) calculations
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well understood, with different approaches yielding a wide
range of results. This fundamental issue remains unre-
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experimental probes for comparison with theory.
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can be directly compared with theoretical results on HEG.
In particular, we obtain a precise experimental reference
value for the quasiparticle renormalization factor ZkF ,
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measured by inelastic x-ray scattering experiments on bulk
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¼ 0:58ð7Þ. Our
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We compare our experimental results to theoretical cal-
culations using QMC and G0W0 methods, for both HEG
and Na, including the electron-electron interaction and
band-structure effects. Our calculations confirm the jel-
liumlike behavior of Na and allow us to quantify the small
deviations from HEG. Finally, we compare the results with
other many-body approximations applied to HEG in litera-
ture [2–8]. Unless explicitly specified, we use atomic units
(a.u.).
Theory.—The momentum distribution per spin state

nðpÞ (see Fig. 1) is one of the basic many-body observables
where the Pauli principle for fermions is directly visible. It
is the probability to observe an electron with momentum p.
For a noninteracting Fermi gas at zero temperature, nðpÞ is
1 for p below the Fermi momentum pF and 0 above, i.e.,
nðpÞ ¼ !ðpF ! pÞ with a discontinuity " ¼ nðp!

F Þ !
nðpþ

F Þ ¼ 1 occurring at the FS. For a noninteracting crys-
talline system, the electrons occupy Bloch wave functions,
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0
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  (a.u.)p

n(
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p
F
 = 0.49 a.u.
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Ideal Fermi gas

FIG. 1 (color online). The momentum distribution of Na de-
termined by experiment, QMC SJ, G0W0, and LDA calculations.
The ideal-Fermi gas step function is also shown.
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QMC and G0W0 indicate
that bandstructure and correlation effects 

factorize at kF

ζNa

!"kðrÞ ¼
P

G
~!G
"ke

iðkþGÞr, where k is the crystal momen-
tum, " is the band index, and G are reciprocal lattice
vectors. For systems like Na with one valence band (" ¼
1) whose Fermi surface is entirely contained within the first
Brillouin zone (1BZ), the band structure reduces the dis-
continuity of the nðpÞ, # ¼ j ~!G¼0

"¼1;kF
j2 < 1. From a

density-functional theory calculation within the local-
density approximation (LDA) for Na, we obtain #NaLDA ¼
0:98ð1Þ. The calculated valence band is an almost perfect
parabola, its wave function is nearly isotropic, and its FS
deviates from a perfect sphere by only 0.2%, leading to a
further, albeit small, reduction of the discontinuity when
nðpÞ is orientationally averaged.

Many-body effects introduce a much larger reduction
of the discontinuity at the FS, known as the quasipar-
ticle renormalization factor ZkF

. Theoretical predictions
for ZkF

using different approximations range from 0.45 to
0.79 for the density considered (see Table I). In general,
ZkF

is related to the self-energy !";"ðk;!Þ via ZkF
¼

½1& @!1;1ðkF;!Þ=@!j!¼$F '&1, ! ¼ !e-e þ !e-ph con-
taining the electron-electron interactions !e-e and the
electron-phonon effects !e-ph. For HEG the discontinuity
in nðpÞ is #HEG ¼ ZkF . In a jelliumlike system such as Na,
band-structure effects and many-body correlations can be
factorized so that #Na ¼ j ~!G¼0

"¼1;kF
j2ZkF

with ZkF
very close

to the value for HEG at the same density, if phonon effects
can be neglected.

To determine ZkF
theoretically, we performed pseudo-

potential diffusion QMC [9,10] calculations of bulk so-
dium based on a Slater-Jastrow (SJ) wave function using
the QMCPACK code, and more precise calculations using
backflow (BF) for HEG. In addition, we have done a non-
self-consistent (one-shot) G0W0 calculation [2] starting
from LDA using the ABINIT code. Within both QMC and
G0W0 methods, pseudopotentials are used to describe the
core electrons, based on a regular static lattice for the ions,
neglecting effects due to electron-phonon coupling.

Whereas core correlation effects only give smooth correc-
tions that do not influence the value of the renormalization
factor, electron-phonon coupling may lead to a further
decrease of ZkF

. However, since the phonon Debye fre-
quency !D is small compared to the Fermi energy, the
main effects are expected only within a narrow momentum
region around pF, with %p=pF & !D=p

2
F ( 10&2, beyond

the resolution of the experiment. The static approximation
and the use of pseudopotential should thus be sufficient to
obtain the value of ZkF

, whereas they may be less accurate
to predict the CP itself.
Experiment.—A unique bulk-sensitive probe of the nðpÞ

is offered by Compton scattering of x rays [11]. The
experiment measures the spectra of x rays scattered by an
electron system. When the energy transferred to the elec-
tron is much larger than its binding energy, the so-called
impulse approximation is valid and the measured spectrum
is related to the CP, which in isotropic average normalized
to one electron is

JðqÞ ¼ 3

8&p3
F

Z
4&

d"
Z 1

jqj
pnðpÞdp: (1)

Here q is the component of the ground-state momentum of
the electron projected onto the scattering vector. Assuming
an isotropic system, nðpÞ can thus be extracted by a dif-
ferentiation of the CP,

nðpÞ ¼ & 2p3
F

3p

dJðqÞ
dq

!!!!!!!!q¼p
: (2)

For the noninteracting HEG the CP is an inverted parabola
JðqÞ ¼ 3

4p3
F
ðp2

F & q2Þ for q < pF and vanishes for q > pF.

Many-body effects promote a part of the electrons from
below to above pF. The CP, while being always continu-
ous, will have a discontinuity in the first derivative at pF.
Measuring the CP accurately allows the extraction of nðpÞ
by using Eq. (2). The determination of ZkF via x-ray
Compton scattering has been a long-standing goal of
many scientists [11]. The simultaneous requirements of
extremely high momentum resolution and statistical accu-
racy as well as difficulties in separating band-structure and
correlation effects have made such attempts difficult, lead-
ing to anomalously low values of, e.g., ZLi

kF
¼ 0:1ð1Þ for Li

(rs ¼ 3:25) [12]. Promising results were given for Al (rs ¼
2:07) [13] by comparisons with an analytical model of nðpÞ
with an adjustable ZkF [12], giving the best agreement with
ZAl
kF

( 0:7. This determination, however, assumed a spe-

cific shape of nðpÞ and thus was not model independent.
Our choice of a HEG-like system of Na combined with
ultrahigh resolution measurements allows us to accurately
determine the nðpÞ and ZNa

kF
in a model-independent way.

The experiments were performed at the beam line ID16
[14] of the European Synchrotron Radiation Facility on
polycrystalline Na. The spectrometer was based on a
Rowland circle with spherically bent analyzer crystals
with a Bragg angle of 89). The measurements were done

TABLE I. Our results for # and ZkF of Na and HEG at rs ¼
4:0: experimental value compared to G0W0, QMC SJ and QMC
BF. Various theoretical values of HEG from literature are also
quoted. [Effective-potential expansion (EPX), Fermi hypernetted
chain (FHNC).]

Technique #Na ZNa
kF

ZHEG
kF

Experiment 0.57(7) 0.58(7)
QMC SJ 0.68(2) 0.70(2) 0.69(1)
QMC BF 0.66(2)
G0W0 0.64(1) 0.65(1) 0.64 [2]
GW [6] 0.793
RPA (on shell) [4,5] 0.45
expS2 [4] 0.59
EPX [8] 0.61
Lam [5] 0.615
FHNC [7] 0.71

PRL 105, 086403 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

20 AUGUST 2010

086403-2

LDA bandstructure wfn-coeff. ZNa≅ Z3DEG 

comparision with
theories

valence electron density:
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Summary and Outlook

Differences in Compton profile of sodium: 
Final state effects, core electrons, phonons?
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Importance of thermodynamic limit extrapolation

Imaginary time dynamics: 

Spectral properties, conductivity, ....
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