Beyond piezoelectrics: First-principles theory and calculations of flexoelectricity

<u>Jiawang Hong</u>, David Vanderbilt Rutgers University

Grant acknowledgement: ONR N-00014-12-1-1035

Outline

- Introduction
- First-principles theory of flexoelectricity
- First-principles calculation of flexoelectricity
- Summary

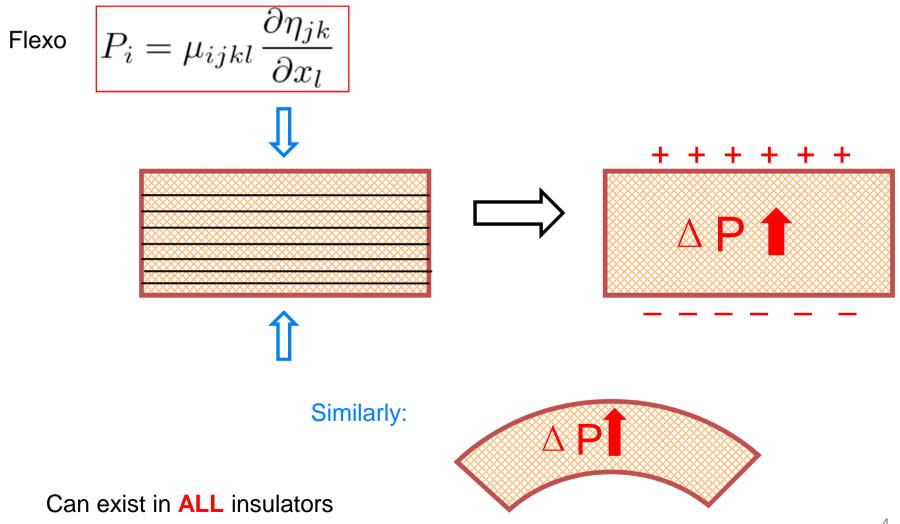
Piezoelectricity

Coupling between strain and polarization

Only exists in **non-centrosymmetric** materials

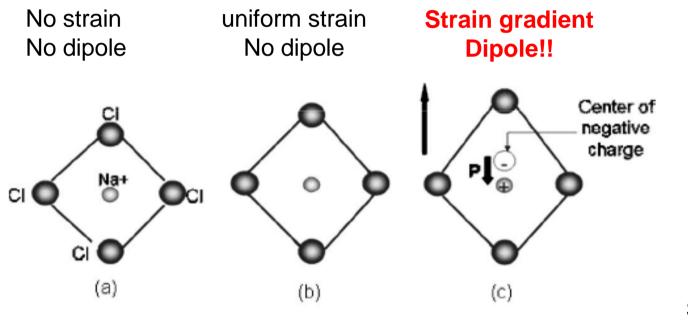
Flexoelectricity

Linear coupling between strain gradient and polarization.



Flexoelectricity

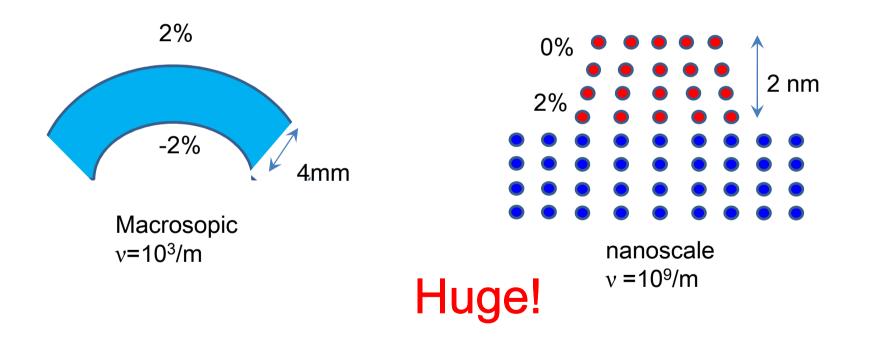
<u>Centrosymmetric crystal</u>:



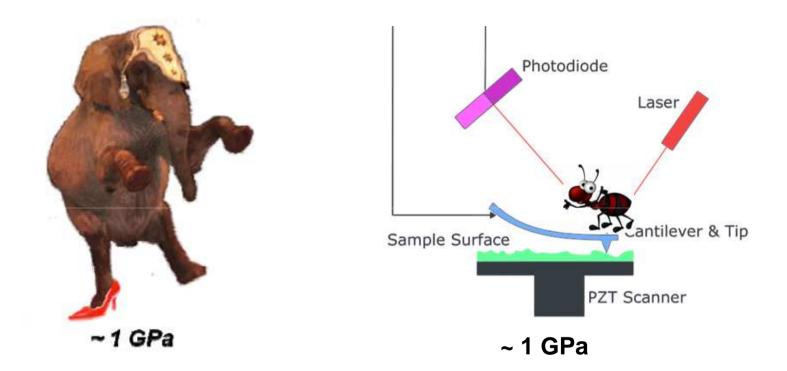
Sodium chloride

Flexoelectricity

Large effect on properties at nanoscale: strain gradients may be huge



Stress under AFM tip

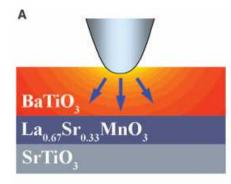


Figures courtesy of G. Catalan and J.Kreisel

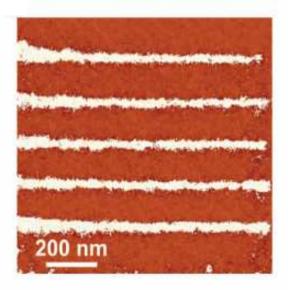
Large stress and stress gradient around AFM tip

Flexoelectrically written domains

C.H. Ahn et al, Science, 303, 488 (2004)



Epitaxial BaTiO₃ film on STO



Flexo written domain dots (30nm in size), high-density data storage application.

H. Lu et al, Science, 336, 59 (2012)

Measurement of FEC

$$P_{i} = \mu_{ijkl} \frac{\partial \eta_{jk}}{\partial x_{l}}$$
Ma and Cross,
(2001, 2002, 2003,
2005,2006)
P. Zubko et al

(2007)

P. Zubko et al (2007)

liquid N₂

Can't measure the full FEC tensor

heater

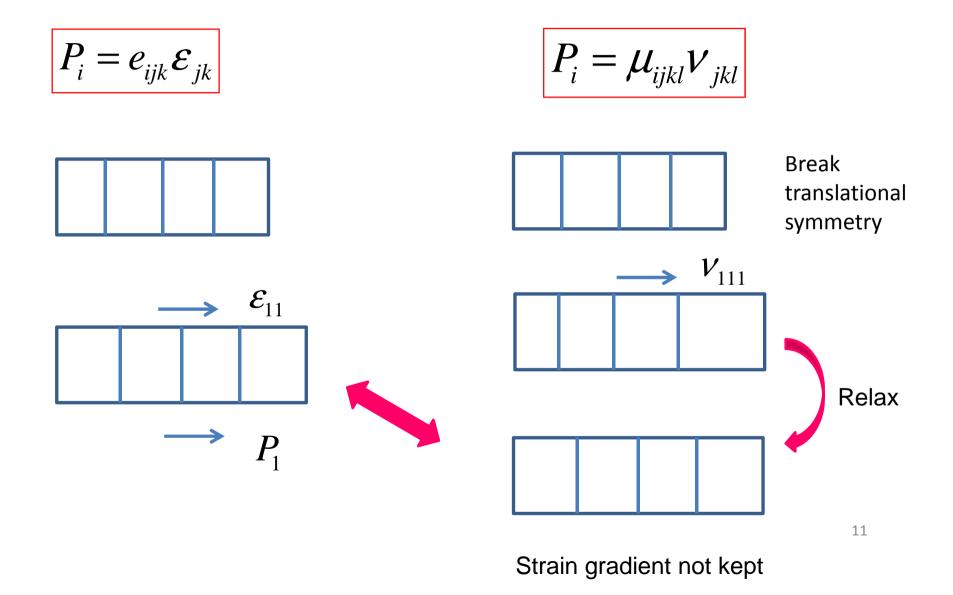
SrTiO₃

Theoretical flexo study

- Martin, 1972
 - Long-wave analysis of piezoelectricity
- Tagantsev, 1986, 1991
 - Rigid-ion model of flexoelectricity
- Maranganti and Sharma, 2009
 - Lattice-dynamical approach
- Resta, 2010
 - First-principles; electronic only; elements only
- Hong and Vanderbilt, 2011
 - Generalized theory of electronic part
- Ponomareva, Tagantsev and Bellaiche, 2012
 - Lattice part generalized to finite T simulations
- Massimiliano Stengel (unpublished)
 - density-functional perturbation theory

Electronic contribution

Difficulties in FEC calculation



Outline

- Introduction
- First-principles theory of flexoelectricity
 - Derivation of flexoelectricity
 - Longitudinal vs. transverse
 - Force pattern dependence
- First-principles calculation of flexoelectricity
- Summary

Strategy of the derivation

PHYSICAL REVIEW B

VOLUME 5, NUMBER 4

15 FEBRUARY 1972

Piezoelectricity

Richard M. Martin Xerox Palo Alto Research Center, Palo Alto, California 94304

Piezoelectricity theory based on the density of local **dipoles** and **quadrupoles** induced by a long-wave deformation

$$Q^{(1)}, Q^{(2)}$$
 $\mathbf{u}_{lI} = (\mathbf{u}^{(0)} + \mathbf{u}_{I}^{(1)}) e^{i\mathbf{k}\cdot\mathbf{R}_{lI}}$

Using Linear-response and Berry-phase methods to calculate piezo response.

Derived from Bloch's theorem which needs periodic boundary condition.

Strain gradient breaks periodic BC.

$$Q^{(1)}, Q^{(2)}, Q^{(3)}$$
 $\mathbf{u}_{lI} = (\mathbf{u}^{(0)} + \mathbf{u}_{I}^{(1)} + \mathbf{u}_{I}^{(2)}) e^{i\mathbf{k}\cdot\mathbf{R}_{lI}}$

Let

 $P_{\alpha}(\mathbf{r})$ be a local dipole density $Q_{\alpha\beta}(\mathbf{r})$ be a local quadrupole density $\mathcal{O}_{\alpha\beta\gamma}(\mathbf{r})$ be a local octupole density

Then the resulting effective charge density is

$$\rho^{\text{(eff)}}(\mathbf{r}) = -\partial_{\alpha}P_{\alpha}(\mathbf{r}) + \frac{1}{2}\partial_{\alpha}\partial_{\beta}Q_{\alpha\beta}(\mathbf{r}) - \frac{1}{6}\partial_{\alpha}\partial_{\beta}\partial_{\gamma}\mathcal{O}_{\alpha\beta\gamma}(\mathbf{r}) + \dots$$

But Poisson's equation is

$$\rho^{\text{(eff)}}(\mathbf{r}) = -\partial_{\alpha} P_{\alpha}^{\text{(eff)}}(\mathbf{r})$$

so alternatively we can write

$$P_{\alpha}^{(\text{eff})}(\mathbf{r}) = P_{\alpha}(\mathbf{r}) - \frac{1}{2}\partial_{\beta}Q_{\alpha\beta}(\mathbf{r}) + \frac{1}{6}\partial_{\beta}\partial_{\gamma}\mathcal{O}_{\alpha\beta\gamma}(\mathbf{r}) + \dots$$

Define

 $u_{{f R}I au} = {
m displacement}$ of atom I in direction au in cell ${f R}$ and let

 $u_{\mathbf{R}I\tau} = g(\mathbf{R}) u_{I\tau}$, $g(\mathbf{R})$ slowly varying.

Then the induced dipole, quadrupole, and octupole densities are

$$P_{\alpha} = \frac{1}{V_{c}} \sum_{I} Q_{I,\alpha\tau}^{(1)} u_{I\tau}$$
$$Q_{\alpha\beta} = \frac{1}{V_{c}} \sum_{I} Q_{I,\alpha\tau\beta}^{(2)} u_{I\tau}$$
$$\mathcal{O}_{\alpha\beta\gamma} = \frac{1}{V_{c}} \sum_{I} Q_{I,\alpha\tau\beta\gamma}^{(3)} u_{I\tau}$$

$$Q_{I,\alpha\tau}^{(1)} = \int d\mathbf{r} \, r_{\alpha} \, f_{I\tau}(\mathbf{r}) \quad \text{(Dynam. Z*)}$$
$$Q_{I,\alpha\tau\beta}^{(2)} = \int d\mathbf{r} \, r_{\alpha} \, f_{I\tau}(\mathbf{r}) \, r_{\beta}$$
$$Q_{I,\alpha\tau\beta\gamma}^{(3)} = \int d\mathbf{r} \, r_{\alpha} \, f_{I\tau}(\mathbf{r}) \, r_{\beta} \, r_{\gamma}$$

where

$$f_{I\tau}(\mathbf{r} - \mathbf{R} - \mathbf{r}_I) = \frac{\partial \rho(\mathbf{r})}{\partial u_{\mathbf{R}I\tau}}$$

$$P_{\alpha}^{(\text{eff})}(\mathbf{r}) = P_{\alpha}(\mathbf{r}) - \frac{1}{2}\partial_{\beta}Q_{\alpha\beta}(\mathbf{r}) + \frac{1}{6}\partial_{\beta}\partial_{\gamma}\mathcal{O}_{\alpha\beta\gamma}(\mathbf{r}) + \dots$$

$$P_{\alpha}^{(\text{eff})}(\mathbf{r}) = \frac{1}{V_{\text{c}}} \sum_{I} \left[Q_{I,\alpha\tau}^{(1)} g(\mathbf{r}) - \frac{1}{2} Q_{I,\alpha\tau\beta}^{(2)} \partial_{\beta} g(\mathbf{r}) + \frac{1}{6} Q_{I,\alpha\tau\beta\gamma}^{(3)} \partial_{\beta} \partial_{\gamma} g(\mathbf{r}) \right] u_{I\tau}$$

So, for a long-wavelength mode of the form

$$g(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}$$

the local polarization is

$$P_{\alpha} = \frac{1}{V_{c}} \sum_{I} \left[Q_{I,\alpha\tau}^{(1)} - \frac{i}{2} Q_{I,\alpha\tau\beta}^{(2)} k_{\beta} - \frac{1}{6} Q_{I,\alpha\tau\beta\gamma}^{(3)} k_{\beta} k_{\gamma} \right] u_{I\tau}$$

Define the *unsymmetrized* strain and strain gradient tensors

$$\eta_{\alpha\beta} = \frac{\partial u_{\alpha}}{\partial r_{\beta}}$$
$$\nu_{\alpha\beta\gamma} = \frac{\partial \eta_{\alpha\beta}}{\partial r_{\gamma}} = \frac{\partial u_{\alpha}}{\partial r_{\beta}r_{\gamma}}$$

Let

$$\begin{split} &\Gamma_{I\tau\beta\gamma} = \frac{du_{I\tau}}{d\eta_{\beta\gamma}} & \text{``internal strain response tensor''} \\ &N_{I\tau\beta\gamma\delta} = \frac{du_{I\tau}}{d\nu_{\beta\gamma\delta}} & \text{``internal strain-gradient response tensor''} \end{split}$$

Then

$$u_{I\tau} = u_{\tau} + \Gamma_{I\tau\beta\gamma} \eta_{\beta\gamma} + N_{I\tau\beta\gamma\delta} \nu_{\beta\gamma\delta}$$

Then, for the long-wavelength acoustic mode, we have a

Displacement $u_{\beta}(\mathbf{r}) = u_{0\beta} e^{i\mathbf{k}\cdot\mathbf{r}}$ Strain $\eta_{\beta\gamma}(\mathbf{r}) = iu_{0\beta} k_{\gamma} e^{i\mathbf{k}\cdot\mathbf{r}}$ Strain gradient $\nu_{\beta\gamma\delta}(\mathbf{r}) = -u_{0\beta} k_{\gamma} k_{\delta} e^{i\mathbf{k}\cdot\mathbf{r}}$

or

$$u_{I\tau} = \left[\delta_{\tau\beta} + i\Gamma_{I\tau\beta\gamma} k_{\gamma} - N_{I\tau\beta\gamma\delta} k_{\gamma} k_{\delta}\right] u_{0\beta}$$

Thus

$$P_{\alpha} = \frac{1}{V_{c}} \sum_{I} \left[Q_{I,\alpha\tau}^{(1)} - \frac{i}{2} Q_{I,\alpha\tau\beta}^{(2)} k_{\beta} - \frac{1}{6} Q_{I,\alpha\tau\beta\gamma}^{(3)} k_{\beta} k_{\gamma} \right] \\ \times \left[\delta_{\tau\beta} + i \Gamma_{I\tau\beta\gamma} k_{\gamma} - N_{I\tau\beta\gamma\delta} k_{\gamma} k_{\delta} \right] u_{0\beta}$$

Finally, we define the *unsymmetrized*

Piezo tensor:
$$e_{\alpha\beta\gamma} = \frac{\partial P_{\alpha}}{\partial \eta_{\beta\gamma}}$$

Flexo tensor: $\mu_{\alpha\beta\gamma\delta} = \frac{\partial P_{\alpha}}{\partial \nu_{\beta\gamma\delta}}$

so that

$$P_{\alpha} = e_{\alpha\beta\gamma} \eta_{\beta\gamma} + \mu_{\alpha\beta\gamma\delta} \nu_{\beta\gamma\delta} + \dots$$

or, for the acoustic wave in question,

$$P_{\alpha} = i \, e_{\alpha\beta\gamma} \, k_{\gamma} \, u_{0\beta} - \mu_{\alpha\beta\gamma\delta} \, k_{\gamma} k_{\delta} \, u_{0\beta} + \dots$$

$$P_{\alpha} = \frac{1}{V_{c}} \sum_{I} \left[Q_{I,\alpha\tau}^{(1)} - \frac{i}{2} Q_{I,\alpha\tau\beta}^{(2)} k_{\beta} - \frac{1}{6} Q_{I,\alpha\tau\beta\gamma}^{(3)} k_{\beta} k_{\gamma} \right] \\ \times \left[\delta_{\tau\beta} + i \Gamma_{I\tau\beta\gamma} k_{\gamma} - N_{I\tau\beta\gamma\delta} k_{\gamma} k_{\delta} \right] u_{0\beta}$$

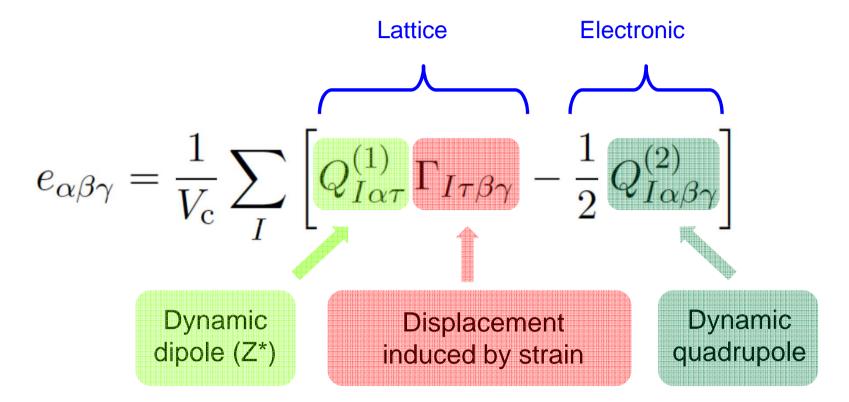
$$P_{\alpha} = i \, e_{\alpha\beta\gamma} \, k_{\gamma} \, u_{0\beta} - \mu_{\alpha\beta\gamma\delta} \, k_{\gamma} k_{\delta} \, u_{0\beta} + \dots$$

Comparing powers of k, we find

$$\text{Piezo} \quad e_{\alpha\beta\gamma} = \frac{1}{V_{c}} \sum_{I} \left[Q_{I\alpha\tau}^{(1)} \Gamma_{I\tau\beta\gamma} - \frac{1}{2} Q_{I\alpha\beta\gamma}^{(2)} \right]$$

$$\mathsf{Flexo} \qquad \mu_{\alpha\beta\gamma\delta} = \frac{1}{V_{\mathbf{c}}} \sum_{I} \left[Q_{I\alpha\tau}^{(1)} N_{I\tau\beta\gamma\delta} - \frac{1}{2} Q_{I\alpha\tau\delta}^{(2)} \Gamma_{I\tau\beta\gamma} + \frac{1}{6} Q_{I\alpha\beta\gamma\delta}^{(3)} \right]$$

Piezoelectric tensor

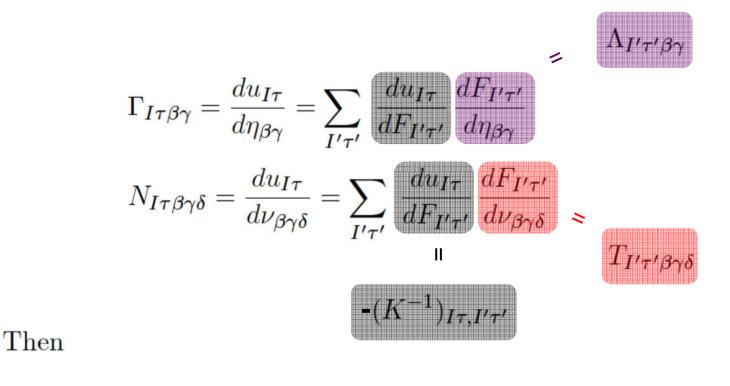


Flexoelectric tensor



Displacement-response tensors

Internal strain and strain-gradient response tensors:



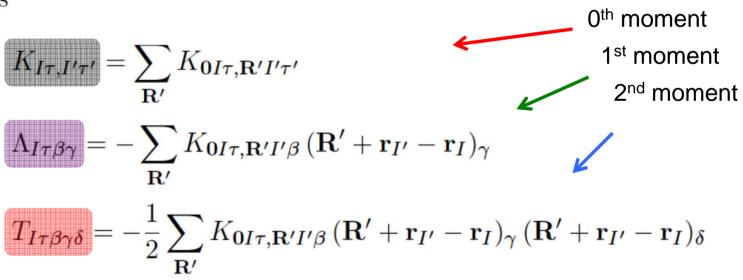
$$\Gamma = (K^{-1}) \cdot \Lambda$$
 and $N = (K^{-1}) \cdot T$

Displacement-response tensors

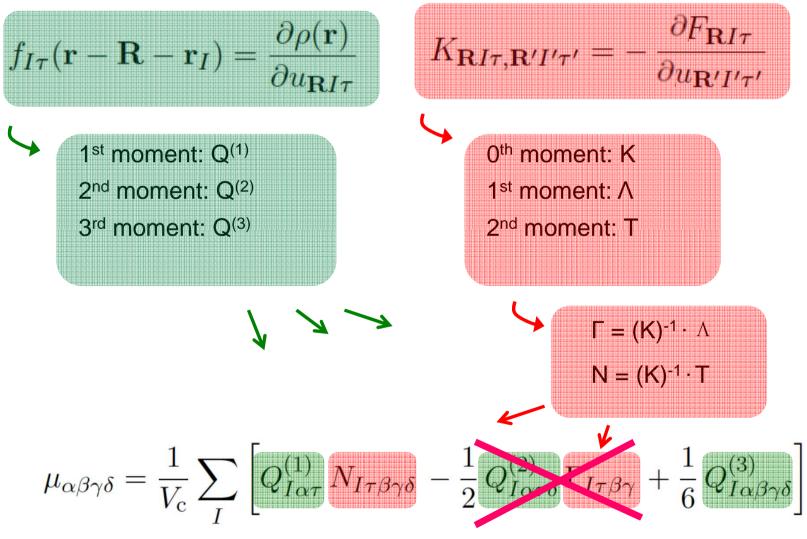
These can be obtained as moments of the full force-constant matrix

$$K_{\mathbf{R}I\tau,\mathbf{R}'I'\tau'} = -\frac{dF_{\mathbf{R}I\tau}}{du_{\mathbf{R}'I'\tau'}}$$

as

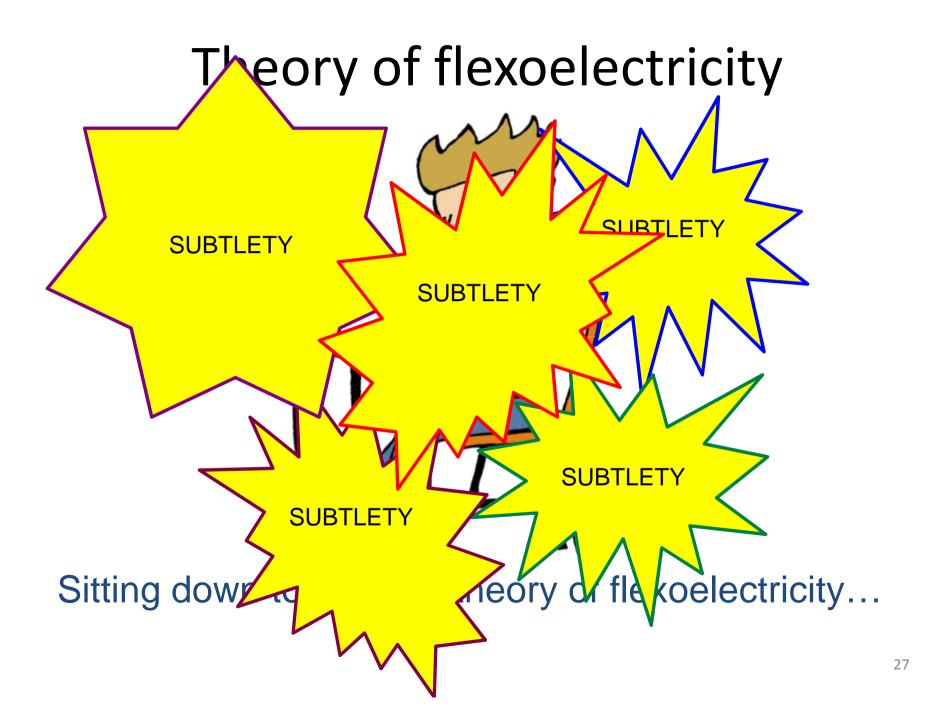


First-principles ingredients



Vanishes in high-symmetry crystals (e.g., cubic) 25

Are we done?



Outline

- Introduction
- First-principles theory of flexoelectricity
 - Derivation of flexoelectricity
 - Longitudinal vs. transverse
 - Force pattern dependence
- First-principles calculation of flexoelectricity
- Summary

Longitudinal vs. transverse flexo

$$\mu_{\alpha\beta\gamma\delta} = \frac{1}{V_{c}} \sum_{I} \left[Q_{I\alpha\tau}^{(1)} N_{I\tau\beta\gamma\delta} + \frac{1}{6} Q_{I\alpha\beta\gamma\delta}^{(3)} \right]$$
(3 x 3 x 6 = 54
components)
(3 x 10 = 30
components)
(3 x 10 = 30)
Not enough!

Example: Cubic material

 $\mu_{1111}, \mu_{1221}, \mu_{1122}$ vs. $Q_{1111}^{(3)}, Q_{1122}^{(3)}$

Longitudinal vs. transverse: Cubic material

Define

$$\mu_{L1} = \mu_{1111}$$
$$\mu_{L2} = \mu_{1111} + 2\mu_{1221}$$
$$\mu_{T} = \mu_{1122} - \mu_{1221}$$

Then

$$\begin{split} \mu_{\rm L1}^{\rm el} &= \frac{1}{6V_{\rm c}} \sum_{I} Q_{I,1111}^{(3)} \\ \mu_{\rm L2}^{\rm el} &= \frac{1}{6V_{\rm c}} \sum_{I} (Q_{I,1111}^{(3)} + 2Q_{I,1122}^{(3)}) \\ \mu_{\rm T}^{\rm el} &= ? \end{split}$$

Longitudinal vs. transverse flexo

- Our theory was based on charge density
- But charge density is only induced by longitudinal part of flexo response

Charge density is

$$-\rho = \partial_{\alpha} P_{\alpha} = \partial_{\alpha} \ \mu_{\alpha\beta\gamma\delta} \ \nu_{\beta\gamma\delta} = \mu_{\alpha\beta\gamma\delta} \ \sigma_{\beta\alpha\gamma\delta}$$

where

$$\eta_{\alpha\beta} = \frac{\partial u_{\alpha}}{\partial r_{\beta}} , \qquad \nu_{\alpha\beta\gamma} = \frac{\partial^2 u_{\alpha}}{\partial r_{\beta} \partial r_{\gamma}} , \qquad \sigma_{\alpha\beta\gamma\delta} = \frac{\partial^3 u_{\alpha}}{\partial r_{\beta} \partial r_{\gamma} \partial r_{\delta}}$$

Longitudinal vs. transverse flexo

- Our theory was based on charge density
- But charge density is only induced by longitudinal part of flexo response

Cubic material:

$$-\rho = \mu_{L1}(\sigma_{1111} + \sigma_{2222} + \sigma_{3333}) + \mu_{L2}(\sigma_{1122} + \sigma_{2211} + \sigma_{1133} + \sigma_{3311} + \sigma_{2233} + \sigma_{3322})$$

independent of μ_T !

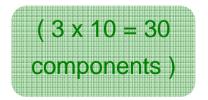
Need *current* response tensors

Induced *charge* response tensors:

$$Q_{I,\alpha\tau}^{(1)} = \int d\mathbf{r} \, r_{\alpha} \, f_{I\tau}(\mathbf{r})$$
$$Q_{I,\alpha\tau\beta}^{(2)} = \int d\mathbf{r} \, r_{\alpha} \, f_{I\tau}(\mathbf{r}) \, r_{\beta}$$
$$Q_{I,\alpha\tau\beta\gamma}^{(3)} = \int d\mathbf{r} \, r_{\alpha} \, f_{I\tau}(\mathbf{r}) \, r_{\beta} \, r_{\gamma}$$

where

$$f_{I\tau}(\mathbf{r} - \mathbf{R} - \mathbf{r}_I) = \frac{\partial \rho(\mathbf{r})}{\partial u_{\mathbf{R}I\tau}}$$



Induced *current* response tensors:

$$J_{I,\alpha\tau}^{(0)} = \int d\mathbf{r} \, j_{I\tau,\alpha}(\mathbf{r})$$
$$J_{I,\alpha\tau\beta}^{(1)} = \int d\mathbf{r} \, j_{I\tau,\alpha}(\mathbf{r}) \, r_{\beta}$$
$$J_{I,\alpha\tau\beta\gamma}^{(2)} = \int d\mathbf{r} \, j_{I\tau,\alpha}(\mathbf{r}) \, r_{\beta} \, r_{\gamma}$$

where

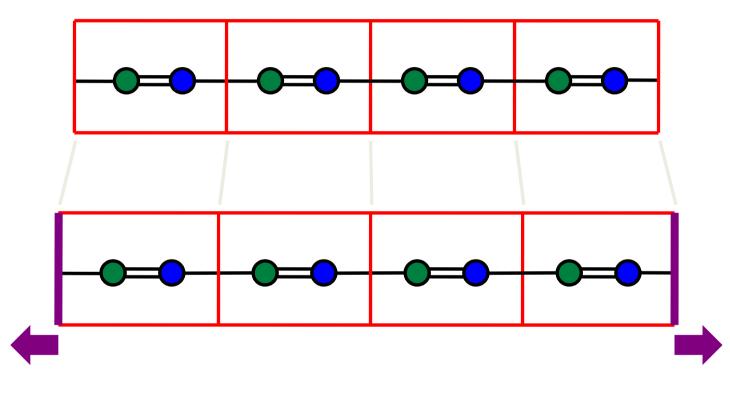
$$\mathbf{j}_{I\tau}(\mathbf{r} - \mathbf{R} - \mathbf{r}_I) = \frac{\partial \mathbf{J}(\mathbf{r})}{\partial \dot{u}_{\mathbf{R}I\tau}}$$

 $\dot{u}_{{f R}I au}$ motion of atom at some small velocity

Outline

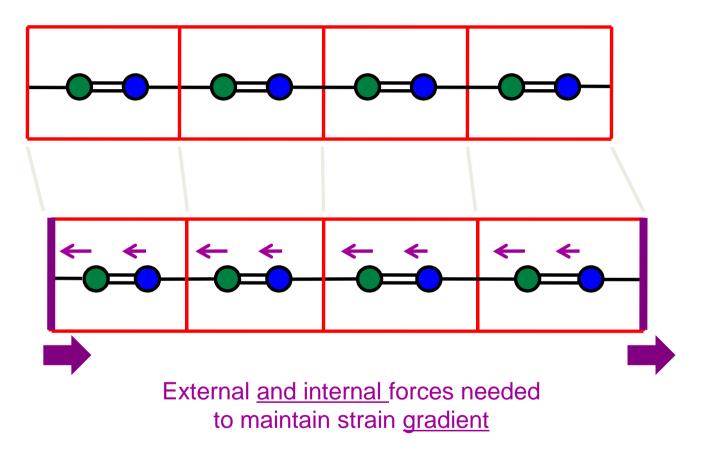
- Introduction
- First-principles theory of flexoelectricity
 - Derivation of flexoelectricity
 - Longitudinal vs. transverse
 - Force pattern dependence
- First-principles calculation of flexoelectricity
- Summary

Uniform strain: Piezo



External forces needed to maintain strain

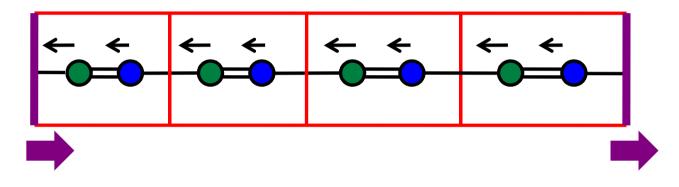
Uniform strain gradient: Flexo



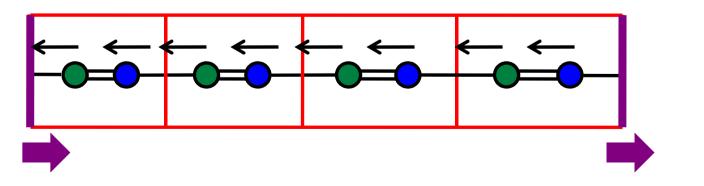
Uniform strain gradient: Flexo

Which force pattern to use?

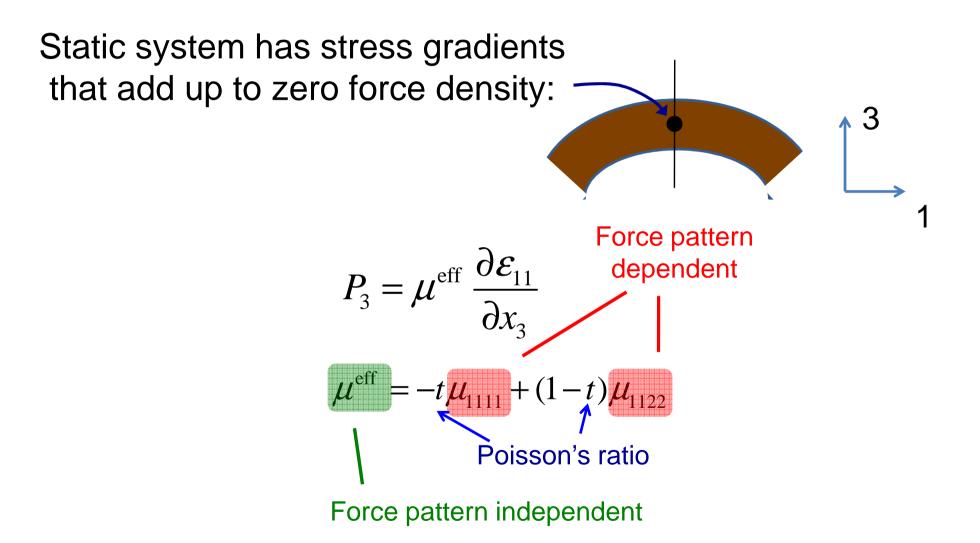
• Mass-weighted forces



• Evenly weighted forces



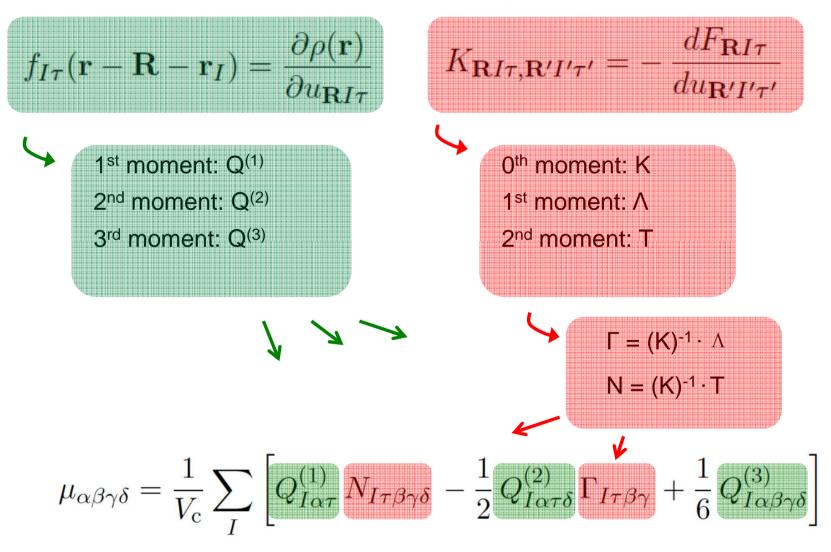
Static elasticity: Dependence cancels



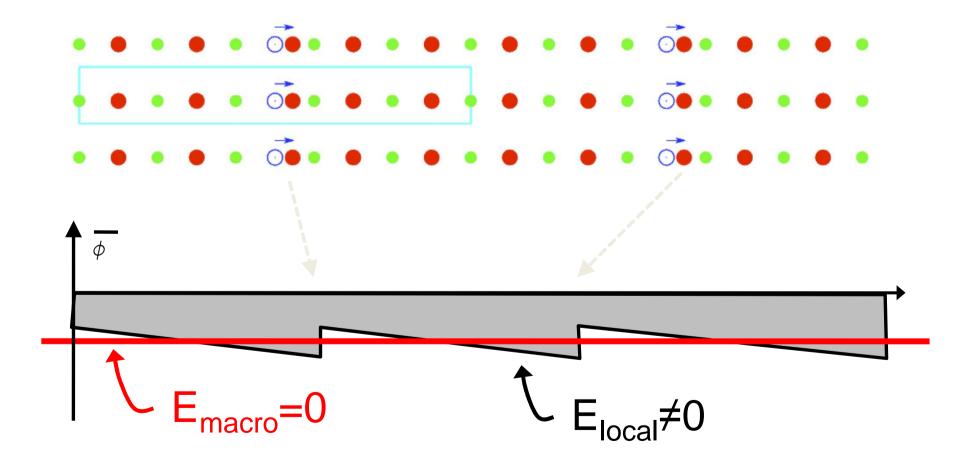
Outline

- Introduction
- First-principles theory of flexoelectricity
- First-principles calculation of flexoelectricity
- Summary

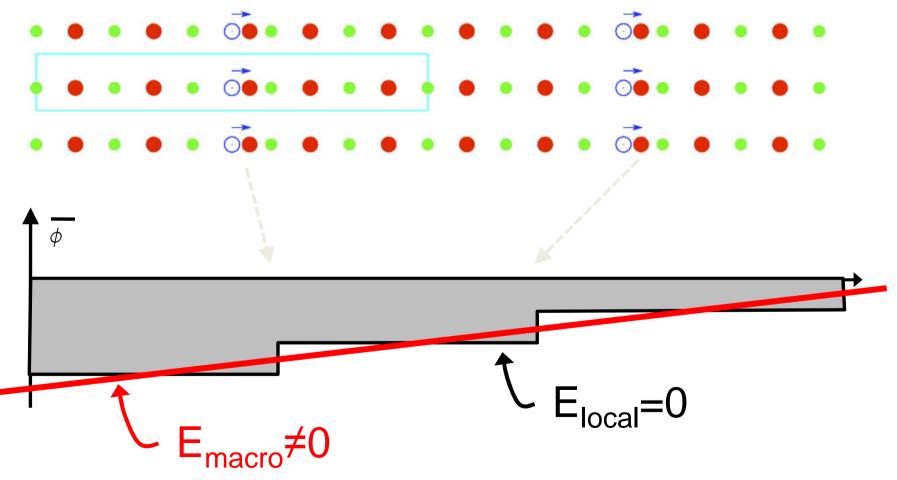
First-principles ingredients



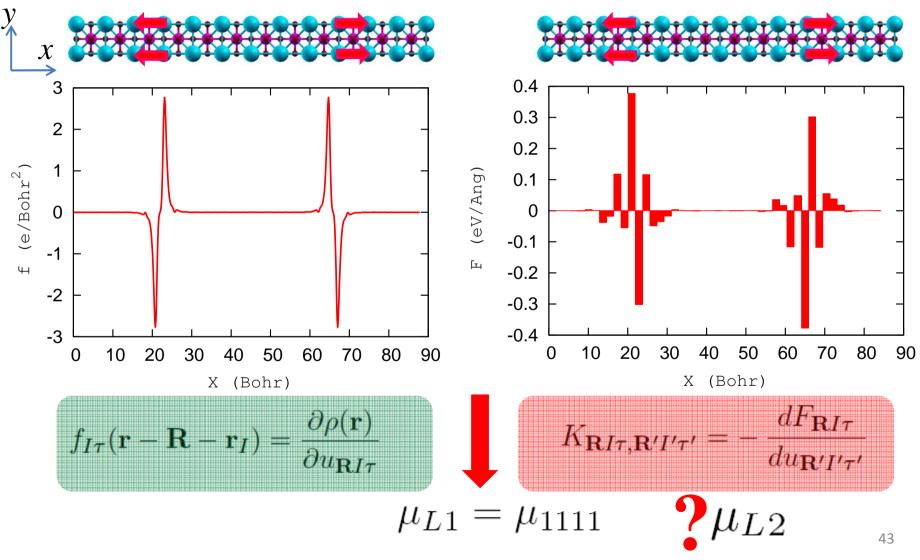
Fixed E_{macro}=0 boundary conditions



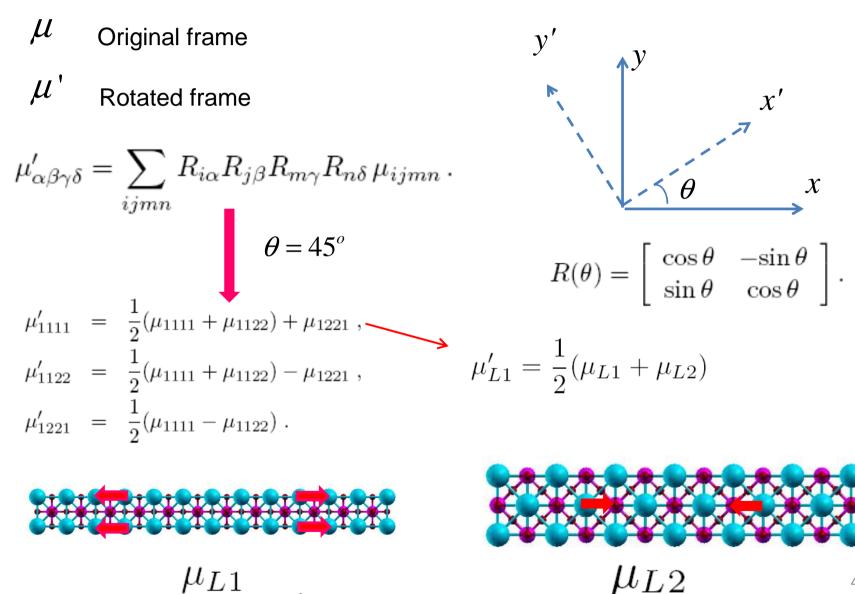
Fixed D=0 boundary conditions



Get *f* and *K* from supercell calculations at fixed D



How to obtain μ_{L2} ?



44

Fixed E vs. Fixed D

- Calculations converge best under fixed D
- Fixed E is a more standard usage
- We need conversions:

 $Z^{(\mathcal{E})} = \epsilon^{\infty} \cdot Z^{(D)}$ $\bar{\mu}^{(\mathcal{E})} = \epsilon^{\infty} \cdot \bar{\mu}^{(D)}$ $K^{(\mathcal{E})}_{IJ} = K^{(D)}_{IJ} - \frac{4\pi}{V_{c}} Z^{(D)}_{I} \cdot \epsilon^{\infty} \cdot Z^{(D)}_{J}$ $T^{(\mathcal{E})}_{I} = T^{(D)}_{I} - 4\pi Z^{(D)}_{I} \cdot \epsilon^{\infty} \cdot \bar{\mu}^{(D)}$ $\mu^{(\mathcal{E})} = \epsilon^{0} \cdot \mu^{(D)}$

Fixed E vs. Fixed D

- Calculations converge best under fixed D
- Fixed E is a more standard usage
- We need conversions:

- Electronic only:

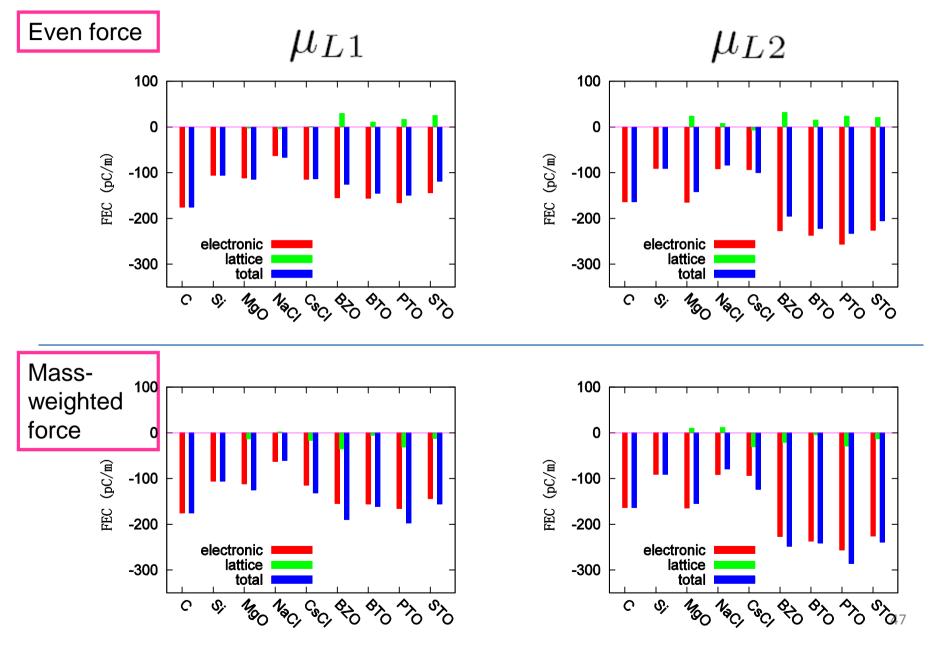
$$\epsilon^{\infty}_{\alpha\lambda}\,\mu^{\mathrm{el},D}_{\lambda\beta\gamma\delta} = \mu^{\mathrm{el},\mathcal{E}}_{\alpha\beta\gamma\delta}$$

(Resta, 2010)

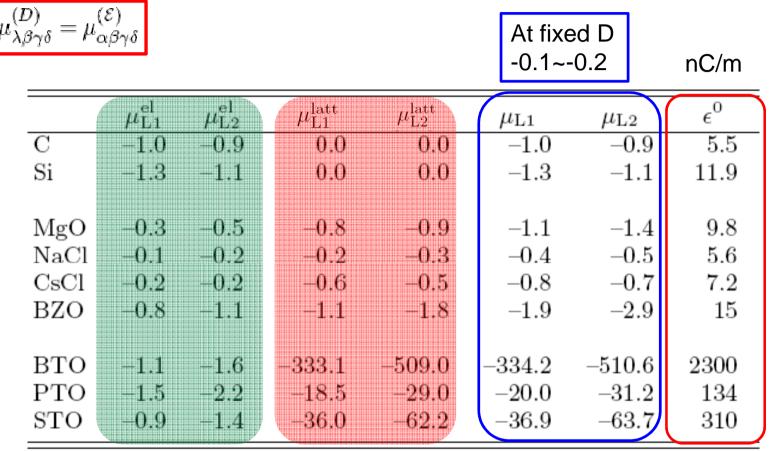
– Total (electronic + lattice)

$$\epsilon^0_{\alpha\lambda}\mu^{(D)}_{\lambda\beta\gamma\delta}=\mu^{(\mathcal{E})}_{\alpha\beta\gamma\delta}$$

FEC at fixed D



FEC at fixed E



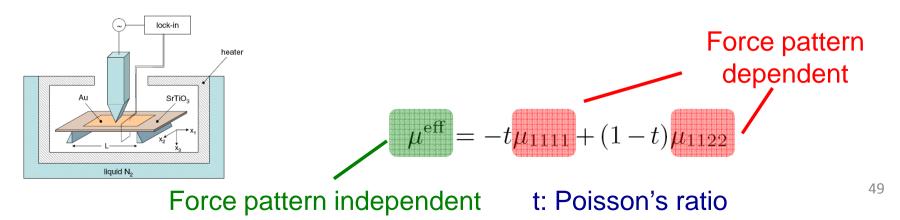
 $\epsilon^0_{\alpha\lambda}\mu^{(D)}_{\lambda\beta\gamma\delta}=\mu^{(\mathcal{E})}_{\alpha\beta\gamma\delta}$

Full FEC at fixed E

Assuming
$$\mu_{T}^{el} = 0$$
 $\mu_{1122}^{el} = \mu_{1221}^{el}$

nC/m	
------	--

		Even force			Mass-weighted force			
	μ_{1111}	μ_{1122}	μ_{1221}	μ^{eff}	μ_{1111}	μ_{1122}	μ_{1221}	$\mu^{\rm eff}$
С	-1.0	-0.9	-0.3	()3	-1.0	-0.3	-0.3	-0.2
Si	-1.3	-0.4	-0.4	0.0	-1.3	-0.4	-0.4	0.0
MgO	-1.1	-0.4	-0.5	-0.3	-1.2	-0.5	-0.5	-0.3
NaCl	-0.4	0.0	-0.3	-0.4	-0.3	0.1	-0.3	-0.5
CsCl	-0.8	-0.2	-0.3	0.0	-0.9	-0.2	-0.3	0.0
BZO	-1.9	0.0	-1.4	-1.7	-2.9	-0.2	-1.7	-1.8
BTO	-334.3	18.4	-264.5	-309.3	-370.8	2.1	-278.4	-307.9
PTO	-20.0	0.3	-15.7	-15.5	-26.4	-1.9	-18.2	15.4
STO	-36.9	-1.3	-31.2	-37.5	-48.4	-4.9	-34.6	-37.2



Compared with previous results

 μ_{L1} at fixed D (pC/m)

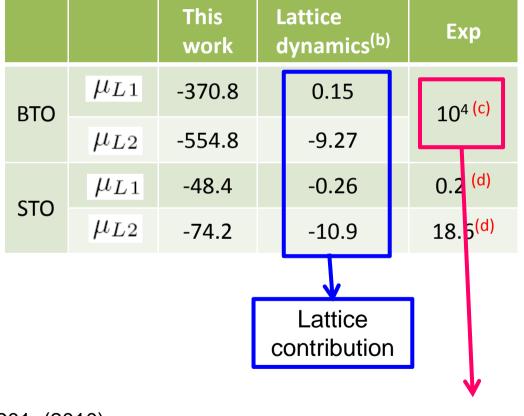
	This work	ab initio ^(a)
BTO	-161	-370 土30
STO	-156	-1380 土650

Different force pattern

Surface effect

➤Effective FEC

 μ_{L1} μ_{L2} at fixed E (nC/m)



 $\mu^{\text{eff}} = -t\mu_{1111} + (1-t)\mu_{1122}$

(a) Hong *et al*, J. Phys. Conds. Matt. 22,112201, (2010)
 (b) Maranganti *et al*.PRB, 80, 054109 (2009)
 (c) Ma *et al*, APL, 88, 232902 (2006)
 (d) Zubko *et al*, PRL, 99, 167601 (2007), PRL, 100, 199906 (2008)

Summary

- Complete first-principles theory of longitudinal part of flexoelectric response
 - Electric boundary conditions
 - Longitudinal vs. transverse
 - Force pattern
- A practical method is proposed for calculating the longitudinal flexoelectric tensors for cubic materials from first principles method.
- The electronic and lattice contribution to FEC are obtained.

Thank you for your attention !