The bandgap of pyrite: bandgap oscillations on an ultrafast timescale

#### Brian Kolb Alexie M. Kolpak





![](_page_0_Picture_4.jpeg)

# Pyrite ( $FeS_2$ )

![](_page_1_Picture_1.jpeg)

![](_page_1_Picture_2.jpeg)

#### Pyrite as a semiconductor

![](_page_2_Figure_1.jpeg)

Ferrer et al., Solid State Comm., 74, 913 (1990)

# Reasons to like pyrite as a solar cell material

#### Good bandgap (0.95 eV)

Good at absorbing solar radiation

#### High absorption

• Thin films can absorb virtually all incident radiation

#### Economics

- Cheap
- Non-toxic
- Abundant

![](_page_3_Picture_9.jpeg)

### Pyrite fails to perform

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

### Possible explanations

![](_page_5_Figure_1.jpeg)

![](_page_5_Picture_2.jpeg)

#### What we're interested in

#### Low open circuit voltage

#### Dynamical properties of the bandstructure

![](_page_6_Picture_3.jpeg)

### The GW method

Single particle Green's function

# Electronic self-energy $\longrightarrow \Sigma = i \tilde{G} W$

Screened Coulomb interaction

Electron plus polarization cloud  $\rightarrow$  weakly interacting quasiparticles

Expansion in screened Coulomb interaction

![](_page_7_Picture_6.jpeg)

#### Methods

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_2.jpeg)

## Bulk bandgap

#### Accepted bandgap = 0.95 eV

#### **GW** calculations

Experimental structure: 1.01 eV

PBE-relaxed structure = 0.83 eV

![](_page_9_Picture_5.jpeg)

# Bulk bandgap

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_2.jpeg)

#### Conduction band minimum

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_2.jpeg)

### S-S distance dependence of the gap

![](_page_12_Figure_1.jpeg)

# Why is this important?

• Bandgap is very sensitive to what coordinates are used

• Phonons

ω = 347 cm<sup>-1</sup> T = 100 fs

## Bulk bandgap with phonons

Thermal excitation at room temperature

$$E_{\omega} = \hbar \omega \left( N_{\omega} + \frac{1}{2} \right)$$
$$N_{\omega} = \frac{1}{\left( e^{\frac{\hbar \omega}{k_B T}} - 1 \right)}$$

 $\Delta E = 26 \text{ meV} \approx k_B T$ 

## Bulk bandgap with phonons

#### Thermal excitation at room temperature

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

# Molecular dynamics

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

# This effect has been seen before

![](_page_17_Picture_1.jpeg)

#### Radial breathing mode

#### Kim et al., Chem. Phys. 413, 55 (2013)

![](_page_17_Picture_4.jpeg)

# We predict this effect in other pyrite-structured systems

![](_page_18_Figure_1.jpeg)

| Systems predicted to exhibit oscillating bandgap |                   |                   |
|--------------------------------------------------|-------------------|-------------------|
| FeS <sub>2</sub>                                 | FeSe <sub>2</sub> | FeTe <sub>2</sub> |
| RuS <sub>2</sub>                                 | RuSe <sub>2</sub> | RuTe <sub>2</sub> |
| OsS <sub>2</sub>                                 | OsSe <sub>2</sub> | OsTe <sub>2</sub> |
| ZnS <sub>2</sub>                                 | ZnSe <sub>2</sub> | ZnTe <sub>2</sub> |
| CdS <sub>2</sub>                                 | MgSe <sub>2</sub> | MgTe <sub>2</sub> |

![](_page_18_Picture_3.jpeg)

#### Is there any hope?

![](_page_19_Figure_1.jpeg)

# Oxygen defects vs bandgap

#### GW calculations

| Oxygen/unit cell | Bandgap [eV] |
|------------------|--------------|
| 1                | 1.38         |
| 2                | 1.62         |
| 3                | 1.88         |
| 4                | 2.13         |

![](_page_20_Picture_3.jpeg)

## Is there any hope?

![](_page_21_Figure_1.jpeg)

# What about conservation of energy?

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

# What about conservation of energy?

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

#### Conclusions

- The bandgap of pyrite depends critically on the sulphur-sulphur distance
- Phonons cause an oscillating bandgap
- Many pyrite-structured systems likely exhibit this oscillation
- Oxygen "defects" cause an opening of the pyrite bandgap and slightly reduce bandgap oscillations

![](_page_24_Picture_5.jpeg)

#### Acknowledgements

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

Extreme Science and Engineering Discovery Environment Ranger Stampede

#### Funding from ARPA-E

![](_page_25_Picture_6.jpeg)