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Outline: The Interacting 1D Electron Gas 
Reduced dimensionality enhances correlations 

 Homogeneous 1D systems well understood theoretically 

 1D physics is fundamentally different from higher-
dimensional physics; the real world is 3D!  

 We study the transition from 1D to higher-D (Zigzag) 

 

 

 

 

 We study the role of inhomogeneity (QPC) 

 

 

 

 



1D electron systems 
 Carbon nanotubes, certain organic salts, electrons floating 

on liquid He, cleaved edge overgrowth quantum wires, 
Linear ion traps, …  
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Physics Today 

 Quantum Point Contacts (QPC’s) 
 2DEG reservoirs separated by 

narrow 1D constriction 

 Variety of interesting, 
unexplained experimental effects 

 Expect conductance through QPC 
quantized in units of 2e2/h;    
Extra unexpected structure at  

  0.7 (2e2/h)! (“0.7 Anomaly”) 

 Bound states 

 Possible row coupling 

 

 

 Thomas et al. PRL 77 135 (1996) 



Model: Quantum Ring (Wire) 
 N electrons confined to ring (quasi-1D system)   

 ω = 0.1, 0.6 

 rs = 0.5 – 5.0 

 Experimentally relevant          
to GaAs QPC’s 
(Rossler et al., Hew et al.) 

 

 Use atomic units:  

 a0
* ≡ ħ2ε/m*e2 = 9.8 nm in GaAs 

 H* ≡ e2/εa0
* = 11.9meV in GaAs 
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 Variational Monte Carlo (VMC): 
 Trial wavefunction: 

 D↑,D↓ - Slater Determinants of single particle orbitals  

 Planewaves 

 LSDA 

 Floating Gaussians 

 

 

 J(R) – Jastrow Factor – incorporates correlations   

 Diffusion Monte Carlo (DMC) 
 Project out ground state: 

 

 

 Fixed Node Approximation (Fermion sign problem) 

Method: Variational and Diffusion Monte Carlo 

 apply repeatedly 



Comparison of VMC Single Particle Orbitals 

 Similar QMC pair densities starting from different orbitals  
ω = 0.1 
rs = 4.0 



 Two length scales: rs= 1/(2naB) and r0,  

 r0: Length where confinement (1/2)mω2r0
2  

      is equal to Coulomb repulsion e2/εr0  

 If rs and r0 are of same order, symmetry about axis of wire breaks 

  Transition to quasi-1D zigzag crystal  

 Smaller ω (wider wire)  effectively stronger interaction. 

 

 

 

 Higher densities: zigzag order decreases, “liquid” (2 gapless modes) 

The Zigzag Transition 

linear Wigner crystal quasi-1D zigzag crystal 
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ω = 0.1, r0 = 5.85: 
r0 > 1 means zigzag transition in 
localized Wigner Crystal regime.  

Classical rs
critical = 3.75 

ω = 0.6, r0 = 1.77: 
more quantum case 

Classical rs
critical = 1.14 

PRL 110, 246802 (2013)  



Pair Density: Linear Wigner Crystal Regime 

 rs = 4.0, ω = 0.1:  N localized peaks along axis of wire 



Pair Density: Zigzag Regime  (ω = 0.1) 

 rs = 4.0:  N localized peaks along axis of wire 

 rs = 3.6:  Zigzag structure 



Pair Density: ω = 0.6 

 rs = 1.5:  Linear regime, weaker localization 



Pair Density: ω = 0.6 

 rs = 1.5:  Linear regime, weaker localization 

 rs = 1.3:  Zigzag regime, but quantum fluctuations 
blur features in pair density 



Liquid Regime, ω = 0.1 

 rs = 3.0: Zigzag Regime 

 rs = 2.0:  Liquid Regime (N = 60) 



Liquid Regime, ω = 0.6 

 rs = 1.3: Zigzag Regime 

 rs = 0.5:  Liquid Regime (N = 60) 



Zigzag Correlation Function, CZZ(|i - j|) 

 Order electrons along axis of wire 

 Zigzag order is not local (tied to coordinate 
along axis of wire) 
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Zigzag Correlation function, ω = 0.1 
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Zigzag Correlation function, ω = 0.6 
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Zigzag Order Parameter 
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 Sharp increase at 
linear-zigzag 
transition 

 Consistent with 
continuous QPT  

 Qualitatively 
different from 
classical case 

 Gradual decrease 
to liquid regime 



Summary: Zigzag 

 Zigzag transition occurs 
at experimentally 
relevant parameters 

 Consistent with 
continuous quantum 
phase transition 

 Long-range zigzag 
correlations even when 
quantum fluctuations 
smear out pair 
correlations (ω = 0.6)  

 Liquid Phase: Zigzag 
correlations destroyed 

PRL 110, 246802 (2013)  

Pair density animations at 

http://tinyurl.com/nrbos87 



QPC: Model 

   

Constriction 

(QPC) 

 ω = 0.6, r0 = 35,  

 s = 5.6, 2.8, 1.4 

 θ0 = 1, 1.5,   

 N = 42, 84, 126 

 (in atomic units) 

 N electrons confined to 

 ring  with constriction at θ = 0 

(or parabolic saddle point) 

s = 5.6 

θ0 = 1.0 



QPC Model Potentials – Smooth Bump 

 Bump function, s = 1.4, similar to real QPC’s 
(Tkachenko et al., J. Appl. Phys, 2001) 

s = 1.4 

θ0 = 1.5 
s = 1.4 

θ0 = 1.0 



Localization in sharp QPC’s (s = 5.6) 

Electrons localize in QPC  
Gap forms between leads 

and localized electrons 



What causes the gap?  

 Barrier in electronic 
interaction potential 
V(r) at gap 

What is the origin of 
this barrier? 

 Simple electrostatics 
predicts barrier for step 

 Our potential (and real 
QPC’s): not that sharp! 

 Barrier forms in 
exchange-correlation 
potential 

Vg = 0.80 

Electrostatic 

+ 

constriction 

potential 

Full QMC 

single-

particle 

potential 

Density 



High-Density Leads N = 126, Vg = 2.5, 

s = 5.6 

2 subbands in leads 

 Localization, Gap still occur 



Smooth Constriction Potentials 

s = 2.8, Vg = 0.8 



s = 1.4: WC Smoothly Connected to Leads 

s = 1.4, Vg = 0.92 s = 1.4, Vg = 0.75 



s  = 1.4, θ0 = 1.5  

  Long QPC 

 

 

 

 

 

 Isolated state forms 
in QPC! 

 Isolated state can 
form in smooth QPC 
if long constriction 

 Wigner Crystal in 
connection region 

s = 1.4 

Vg = 1.15 

θ0 = 1.5 



QPC: Summary 

 Isolated state forms for 
constrictions that have a 
sufficiently long flat region 

 Localized state detected by 
e.g. Bird group, Chang group, 
van der Wal group, … 

 Gap in density larger for sharper 
QPC’s 

 Wigner Crystal smoothly 
connects leads to constriction for 
smoother QPC’s  

 Consistent with Matveev 0.7 
explanation 

 Effects visible for a variety of 
QPC shapes and with high-
density leads 

s = 5.6  

Vg = 0.8 

θ0 = 1.0 

s = 1.4 

Vg = 1.15 

θ0 = 1.5 

s = 1.4  

Vg = 0.75 

θ0 = 1.0 



Conclusions 
 1D to Higher-D: Zigzag Transition 

 Consistent with continuous 
Quantum Phase Transition; 
qualitatively different from 
classical case 

 Occurs at experimentally 
relevant parameters 

 Zigzag order present even in 
absence of positional order in 
narrow wires 

 Inhomogeneous 1DEG: QPC’s 

 Electrons localize in QPC’s for 
a variety of potential shapes 
due to exchange – correlation  

 Bound state can form even in 
smooth QPC if long 

 Short, smooth QPC’s show WC 
smoothly connected to leads 

 

s = 1.4 

Vg = 1.15 

θ0 = 1.5 
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