Nonlocal polarizable continuum models from joint density functional theory

<u>Ravishankar Sundararaman</u> Kendra Letchworth-Weaver Deniz Gunceler Kathleen Schwarz T.A. Arias

Department of Physics, Cornell University

June 14, 2013

ENERGY MATERIALS CENTER AT CORNELL

Outline

- Ab initio studies of solvated systems
- Joint density functional theory (JDFT) overview
- Nonlocal polarizable continuum models from JDFT
- Demonstration: underpotential deposition of Cu on Pt(111)

Why study solvated systems?

- Technological applications
 - Electrochemical systems: fuel cell catalysts, battery materials (EMC², DOE)
 - Biological systems: structure and mechanism prediction

Why study solvated systems?

- Technological applications
 - Electrochemical systems: fuel cell catalysts, battery materials (EMC², DOE)
 - Biological systems: structure and mechanism prediction
- Rich physics
 - Fundamental processes at solid-liquid interfaces
 - Complex equilibria sensitive to electron chemical potential

Why study solvated systems?

- Technological applications
 - Electrochemical systems: fuel cell catalysts, battery materials (EMC², DOE)
 - Biological systems: structure and mechanism prediction
- Rich physics
 - Fundamental processes at solid-liquid interfaces
 - Complex equilibria sensitive to electron chemical potential
- Theory development
 - Constructing free energy functionals for liquids
 - Interactions between 'classical' liquids and quantum electrons

Solvent effects

• Ignore solvent altogether

- Ignore solvent altogether
- Single monolayer of water with hydrogen-bonded geometries chosen manually

- Ignore solvent altogether
- Single monolayer of water with hydrogen-bonded geometries chosen manually
- One snapshot need not be representative of the liquid effect

- Ignore solvent altogether
- Single monolayer of water with hydrogen-bonded geometries chosen manually
- One snapshot need not be representative of the liquid effect
- Thermodynamic sampling with molecular dynamics significantly more expensive

- Ignore solvent altogether
- Single monolayer of water with hydrogen-bonded geometries chosen manually
- One snapshot need not be representative of the liquid effect
- Thermodynamic sampling with molecular dynamics significantly more expensive
- Additional complexity detracts from intuition towards the system of interest

- Ignore solvent altogether
- Single monolayer of water with hydrogen-bonded geometries chosen manually
- One snapshot need not be representative of the liquid effect
- Thermodynamic sampling with molecular dynamics significantly more expensive
- Additional complexity detracts from intuition towards the system of interest
- Capture and abstract away equilibrium effect of solvent

Joint density functional theory (JDFT)

• Exact variational principle after integrating out electrons of part of the system:

$$\Phi = \min_{n, \{N_{\alpha}\}} \left[\Phi_{\mathsf{JDFT}}[n, \{N_{\alpha}\}] + \int V \cdot n + \sum_{\alpha} \int V_{\alpha} \cdot N_{\alpha} \right]$$

S. A. Petrosyan et al, Phys. Rev. B 75, 205105 (2007)

Joint density functional theory (JDFT)

• Exact variational principle after integrating out electrons of part of the system:

$$\Phi = \min_{n, \{N_{\alpha}\}} \left[\Phi_{\mathsf{JDFT}}[n, \{N_{\alpha}\}] + \int V \cdot n + \sum_{\alpha} \int V_{\alpha} \cdot N_{\alpha} \right]$$

• Decompose into physical pieces that can be approximated independently:

$$\Phi_{\text{JDFT}}[n, \{N_{\alpha}\}] = \underbrace{F_{\text{HKM}}[n]}_{\text{Electrons}} + \underbrace{\Phi_{\text{CDFT}}[\{N_{\alpha}\}]}_{\text{Liquid}} + \underbrace{\Delta\Phi[n, \{N_{\alpha}\}]}_{\text{Coupling}}$$

Approximation schemes

• Kohn-Sham electronic DFT with exact non-interacting energy

$$F_{\rm HK}[n] \to F_{\rm KS}[\{\phi_a\}] = \sum_{a} \int \frac{|\nabla \phi_a|^2}{2} + \int \frac{n(\vec{r})n(\vec{r}')}{2|\vec{r} - \vec{r}'|} + E_{\rm XC}[n].$$

W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965)

Approximation schemes

• Kohn-Sham electronic DFT with exact non-interacting energy

$$F_{\rm HK}[n] \to F_{\rm KS}[\{\phi_a\}] = \sum_{a} \int \frac{|\nabla \phi_a|^2}{2} + \int \frac{n(\vec{r})n(\vec{r}')}{2|\vec{r} - \vec{r}'|} + E_{\rm XC}[n].$$

Systematically improvable- can replace KS DFT with QMC: K. Schwarz et al., *Phys. Rev. B* **85**, 201102(R) (2012)

Approximation schemes

• Kohn-Sham electronic DFT with exact non-interacting energy

$$F_{\mathsf{HK}}[n] \to F_{\mathsf{KS}}[\{\phi_a\}] = \sum_a \int \frac{|\nabla \phi_a|^2}{2} + \int \frac{n(\vec{r})n(\vec{r}')}{2|\vec{r} - \vec{r}'|} + E_{\mathsf{XC}}[n].$$

• Classical DFT with exact rigid-molecular ideal gas free energy

 $\Phi_{\mathsf{CDFT}}[\{N_{\alpha}\}] \to \Phi_{\mathsf{CDFT}}[\{p_{\omega}\}] = T \int p_{\omega}(\ln p_{\omega} - 1) + F_{\mathsf{ex}}[\{N_{\alpha}\}]$

in terms of orientation probability density $p_{\omega}(\vec{r})$

R. Sundararaman and T.A. Arias, arXiv:1302.0026

Approximation schemes

• Kohn-Sham electronic DFT with exact non-interacting energy

$$F_{\mathsf{HK}}[n] \to F_{\mathsf{KS}}[\{\phi_a\}] = \sum_a \int \frac{|\nabla \phi_a|^2}{2} + \int \frac{n(\vec{r})n(\vec{r}')}{2|\vec{r} - \vec{r}'|} + E_{\mathsf{XC}}[n].$$

• Classical DFT with exact rigid-molecular ideal gas free energy

$$\Phi_{\mathsf{CDFT}}[\{\mathsf{N}_{\alpha}\}] \to \Phi_{\mathsf{CDFT}}[\{p_{\omega}\}] = \mathcal{T} \int p_{\omega}(\ln p_{\omega} - 1) + \mathcal{F}_{\mathsf{ex}}[\{\mathsf{N}_{\alpha}\}]$$

in terms of orientation probability density $p_{\omega}(\vec{r})$

• Density-only density functional approximation to fluid-electron interactions

$$\Delta\Phi[n, \{N_{\alpha}\}] \approx \underbrace{\int \frac{\rho_{el}\rho_{lq}}{|\vec{r} - \vec{r}'|}}_{\text{Coulomb}} + \underbrace{E_{\text{TXC}}[n + n_{lq}] - E_{\text{TXC}}[n] - E_{\text{TXC}}[n_{lq}]}_{\text{Kinetic-Exchange-Correlation}} - \underbrace{\int \frac{C_{6i\alpha}N_{\alpha}(\vec{r})}{f|\vec{R}_{i} - \vec{r}|^{6}}}_{\text{Dispersion}}$$

K. L.-Weaver, R. Sundararaman and T.A. Arias, (under preparation)

Hydration energy of microscopic cavities

SPC/E data: K. Ding et al *Phys Rev Lett* **59** 1698 (1987)
R. Sundararaman and T.A. Arias, *arXiv*:**1302.0026**

Nonlinear dielectric response

MD data: I.-C. Yeh and M. Berkowitz, *J. Chem. Phys.* **110**, 7935 (1999) R. Sundararaman and T.A. Arias, *arXiv*:**1302.0026**

Solvation energy of molecules

Single fit parameter: dispersion prefactor '*s*₆' K. L.-Weaver, R. Sundararaman and T.A. Arias, (under preparation)

Software for joint density functional theory

- Direct free energy minimization for stable convergence
- Plane-wave electronic DFT in:
 - Vacuum
 - Polarizable continua
 - Classical density functional fluids
- Grand canonical calculations for electrochemistry

R.Sundararaman, D. Gunceler, K. L.-Weaver and T.A. Arias, 'JDFTx', available from http://jdftx.sourceforge.net (2012)

Software for joint density functional theory

- Direct free energy minimization for stable convergence
- Plane-wave electronic DFT in:
 - Vacuum
 - Polarizable continua
 - Classical density functional fluids
- Grand canonical calculations for electrochemistry
- DFT++ algebraic formulation: S. Ismail-Beigi and T.A. Arias, *Comp. Phys. Comm.* **128**, 1 (2000)
- Readable, efficient C++11 code
- Supports nVidia GPUs using CUDATM
- Intel MIC support under developement

R.Sundararaman, D. Gunceler, K. L.-Weaver and T.A. Arias, '*JDFTx*', available from http://jdftx.sourceforge.net (2012)

Why construct simplified models?

• **Generality:** JDFT requires an accurate classical density functional approximation for each solvent of interest

Why construct simplified models?

- **Generality:** JDFT requires an accurate classical density functional approximation for each solvent of interest
- **Cost:** JDFT requires 3-10x computational effort compared to vacuum electronic DFT

Why construct simplified models?

- **Generality:** JDFT requires an accurate classical density functional approximation for each solvent of interest
- **Cost:** JDFT requires 3-10x computational effort compared to vacuum electronic DFT
- Intuition: A simpler model would, by construction, disentangle physical effects and provide insight into the results of the more complex model

Simplified models

Given 4 parameters ...

Simplified models

Given 4 parameters ...

Point dipoles at the molecular scale?

• Drastic approximation: fitting cavity size to solvation energies compensates empirically

Point dipoles at the molecular scale?

- Drastic approximation: fitting cavity size to solvation energies compensates empirically
- Fit parameters are solvent dependent ⇒ need experimental solvation energy data for each solvent of interest

Point dipoles at the molecular scale?

- Drastic approximation: fitting cavity size to solvation energies compensates empirically
- Fit parameters are solvent dependent ⇒ need experimental solvation energy data for each solvent of interest
- Uncontrolled extrapolation when applying to a solute drastically different from fit set

Spherically-averaged liquid susceptibility ansatz (SaLSA)

$$\Phi_{\mathsf{JDFT}}[n, \{N_{\alpha}\}] = \underbrace{F_{\mathsf{HKM}}[n]}_{\mathsf{Electrons}} + \underbrace{\Phi_{\mathsf{CDFT}}[\{N_{\alpha}\}]}_{\mathsf{Liquid}} + \underbrace{\Delta\Phi[n, \{N_{\alpha}\}]}_{\mathsf{Coupling}}$$

Assumptions:

- Cavity density determined from overlap of solute and solvent electron densities
- Solvent molecules oriented randomly in the absence of electrostatics Consequences:

R. Sundararaman, K. L.-Weaver, K. Schwarz and T.A. Arias, (under preparation)

Spherically-averaged liquid susceptibility ansatz (SaLSA)

$$\Phi_{\text{JDFT}}[n, \{N_{\alpha}\}] = \underbrace{F_{\text{HKM}}[n]}_{\text{Electrons}} + \underbrace{\Phi_{\text{CDFT}}[\{N_{\alpha}\}]}_{\text{Liquid}} + \underbrace{\Delta\Phi[n, \{N_{\alpha}\}]}_{\text{Coupling}}$$

Assumptions:

- Cavity density determined from overlap of solute and solvent electron densities
- Solvent molecules oriented randomly in the absence of electrostatics Consequences:
- **Repulsion** \leftarrow Kinetic-exchange-correlation terms in coupling
- **Dispersion** \leftarrow Pair potential vdW terms in coupling
- **Cavitation** \leftarrow Exclusion of classical density functional fluid
- **Electrostatics** \leftarrow Linear rotational and polarization response
- R. Sundararaman, K. L.-Weaver, K. Schwarz and T.A. Arias, (under preparation)
• Solvent molecule with charge density $\rho_{mol}(\vec{r})$ and expand electronic and vibrational susceptibility in eigenbasis (obtain from DFT/DFPT)

$$\chi_{\rm mol}(\vec{r},\vec{r}')=-\sum_i X_i \rho_i(\vec{r})\rho_i(\vec{r}')$$

• Solvent molecule with charge density $\rho_{mol}(\vec{r})$ and expand electronic and vibrational susceptibility in eigenbasis (obtain from DFT/DFPT)

$$\chi_{\mathsf{mol}}(ec{r},ec{r}') = -\sum_i X_i
ho_i(ec{r})
ho_i(ec{r}')$$

• Decompose each ρ into angular momentum channels

$$= \underbrace{\bigcirc}_{l=0}^{l} + \underbrace{\bigcirc}_{l=1}^{l} + \underbrace{\bigcirc}_{l=2}^{l} + \cdots$$

• Susceptibility of fluid of such molecules distributed as $N(\vec{r})$ is exactly

$$\chi(\vec{G},\vec{G}') = -\tilde{N}(\vec{G}-\vec{G}')\sum_{l}\frac{P_{l}(\hat{G}\cdot\hat{G}')}{4\pi}\sum_{m}\left(\begin{array}{c}\frac{1}{T}\tilde{\rho}_{\mathsf{mol}}^{lm}(G)\tilde{\rho}_{\mathsf{mol}}^{lm*}(G')\\+\sum_{i}X_{i}\tilde{\rho}_{i}^{lm}(G)\tilde{\rho}_{i}^{lm*}(G')\end{array}\right)$$

• Susceptibility of fluid of such molecules distributed as $N(\vec{r})$ is exactly

$$\chi(\vec{G},\vec{G}') = -\tilde{N}(\vec{G}-\vec{G}')\sum_{l}\frac{P_{l}(\hat{G}\cdot\hat{G}')}{4\pi}\sum_{m}\left(\begin{array}{c}\frac{1}{T}\tilde{\rho}_{mol}^{lm}(G)\tilde{\rho}_{mol}^{lm*}(G')\\+\sum_{i}X_{i}\tilde{\rho}_{i}^{lm}(G)\tilde{\rho}_{i}^{lm*}(G')\end{array}\right)$$

• Non-local generalization of Poisson (or linearized Poisson-Boltzmann) equation

$$\left(-\frac{\nabla^2}{4\pi}+\hat{\chi}\right)\phi=\rho$$

• Susceptibility of fluid of such molecules distributed as $N(\vec{r})$ is exactly

$$\chi(\vec{G},\vec{G}') = -\tilde{N}(\vec{G}-\vec{G}')\sum_{l} \frac{P_{l}(\hat{G}\cdot\hat{G}')}{4\pi}\sum_{m} \left(\begin{array}{c} \frac{1}{T}\tilde{\rho}_{mol}^{lm}(G)\tilde{\rho}_{mol}^{lm*}(G')\\ +\sum_{i}X_{i}\tilde{\rho}_{i}^{lm}(G)\tilde{\rho}_{i}^{lm*}(G')\end{array}\right)$$

• Non-local generalization of Poisson (or linearized Poisson-Boltzmann) equation

$$\left(-\frac{\nabla^2}{4\pi} + \hat{\chi}\right)\phi = \rho$$

• At l = 1 with rotations alone, computational costs of SaLSA and PCM are identical!

Typical cavities and bound charge (in liquid water)

JDFT (density functional)

Typical cavities and bound charge (in liquid water)

PCM (dielectric)

JDFT (density functional)

Typical cavities and bound charge (in liquid water)

SaLSA (nonlocal response)

JDFT (density functional)

Solvation energies

Single fit parameter: dispersion prefactor 's₆'

Under-potential deposition: Cu/Pt(111) [CI⁻]

Under-potential deposition: Cu/Pt(111) [CI⁻]

Explicit Pt and Cu, implicit solvent

Explicit Pt, Cu and Cl, implicit solvent

Partial monolayer susceptible to additional adsorbants (protons?)

Outlook

- JDFT: efficient description of electronic systems in liquids
- Scope to develop more accurate functionals for liquids and coupling
- Obtain efficient and minimally empirical contiuum models as limit of JDFT
- Explore complex electrochemical systems by specifying atomic positions only of relevant subsystems

Thank you for your attention!

Acknowledgements:

Tomas Arias Kendra L.-Weaver Katie Schwarz Deniz Gunceler

This work was supported as a part of the Energy Materials Center at Cornell (EMC²), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award No. DE-SC0001086.

Iso-density-product cavity determination

- Correlate overlap of atom electron densities with vdW radii
- Fit n_c to minimize discrepancy between $R_1 + R_2$ and R_{12} defined by

$$\int d\vec{r} n_1(\vec{r}) n_2(\vec{r} + R_{12}\hat{e}_z) = n_c$$

- Best fit $n_c = 1.2 \times 10^{-3}$ insensitive to electronic structure method.
- Analogously determine cavity from solute *and* spherically-averaged solvent molecule electron denisties:

$$s(\vec{r}) = \frac{1}{2} \operatorname{erfc} \log \frac{\int d\vec{r}' n(\vec{r}') n_{\text{mol}}(|\vec{r}' - \vec{r}|)}{n_c}$$

Weighted density cavitation energy

- Measure neighbour occupancy with $\bar{s} = \frac{\delta(r-R_{vdw})}{4\pi R_{vdw}^2} * s(\vec{r})$
- Constrain weighted density approximation to limits:

$$\begin{split} \Phi_{\mathsf{cav}}[s] &= \mathsf{N}_{\mathsf{bulk}} \mathcal{T} \int \bar{s}(1-\bar{s}) \left(\bar{s} + \gamma(1-\bar{s}) + C\bar{s}(1-\bar{s})\right) \\ \text{where } \gamma &\equiv \mathsf{ln} \, \frac{\mathsf{P}_{\mathsf{vap}}}{\mathsf{N}_{\mathsf{bulk}} \mathcal{T}} - 1 \\ C &\equiv \frac{\sigma_{\mathsf{bulk}}}{\mathsf{R}_{\mathsf{vdw}} \mathsf{N}_{\mathsf{bulk}} \mathcal{T}} + \frac{1+\gamma}{6} \end{split}$$

Cavity model vs classical DFT

Size consistency

Ratio of sphere separation to diameter, L/d

Density functional theory

• Ground state energy of many-electron system from ground state density $n(\vec{r})$ alone

$$E = \min_{\psi} \langle \psi | (\hat{H} + V) | \psi \rangle = \min_{n} \left[F_{\mathsf{HK}}[n] + \int V \cdot n \right]$$

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

Density functional theory

• Helmholtz free energy of many-electron system from equilibrium density $n(\vec{r})$ alone

$$A = \min_{\hat{\rho}} \operatorname{Tr}(\hat{H} + V)\hat{\rho} = \min_{n} \left[F_{\mathsf{HKM}}[n] + \int V \cdot n \right]$$

N.D. Mermin, Phys. Rev. 137, A1441 (1965)

1

Density functional theory

• Helmholtz free energy of many-electron system from equilibrium density $n(\vec{r})$ alone

$$\mathsf{A} = \min_{\hat{\rho}} \mathsf{Tr}(\hat{H} + V)\hat{\rho} = \min_{n} \left[\mathsf{F}_{\mathsf{HKM}}[n] + \int V \cdot n \right]$$

• Grand free energy of many-body nuclear system from equilibrium densities $\{N_{\alpha}(\vec{r})\}$ alone

$$\Phi = \min_{\hat{P}} \operatorname{Tr}(\hat{H} + \vec{V})\hat{P} = \min_{\{N_{\alpha}\}} \left[\Phi_{CDFT}[\{N_{\alpha}\}] + \sum_{\alpha} \int V_{\alpha} \cdot N_{\alpha} \right]$$

'Classical' DFT is fully quantum, not even Born-Oppenheimer approximation!

• Employ exact free energy of non-interacting classical fluid (analogous to Kohn-Sham) in terms of orientation probability density p_{ω}

$$\Phi_{\mathsf{CDFT}}[\{N_{lpha}\}] o T \int p_{\omega}(\ln p_{\omega} - 1)$$
 Non-interacting free energy +

• Employ exact free energy of non-interacting classical fluid (analogous to Kohn-Sham) in terms of orientation probability density p_{ω}

$$\Phi_{CDFT}[\{N_{\alpha}\}] \rightarrow T \int p_{\omega}(\ln p_{\omega} - 1)$$
 Non-interacting free energy
+ $\Phi_{HS}[N]$ Hard-sphere entropy corrections
+

Fundamental measure theory: Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)

• Employ exact free energy of non-interacting classical fluid (analogous to Kohn-Sham) in terms of orientation probability density p_{ω}

$$\begin{array}{l} \Phi_{\mathsf{CDFT}}[\{N_{\alpha}\}] \to \mathcal{T} \int p_{\omega}(\ln p_{\omega} - 1) & \text{Non-interacting free energy} \\ &+ \Phi_{\mathsf{HS}}[N] & \text{Hard-sphere entropy corrections} \\ &+ \int N_{\alpha} Z_{\alpha} \cdot \frac{1}{2|\vec{r} - \vec{r'}|} \cdot N_{\beta} Z_{\beta} & \text{Mean-field Coulomb interactions} \\ &+ \end{array}$$

• Employ exact free energy of non-interacting classical fluid (analogous to Kohn-Sham) in terms of orientation probability density p_{ω}

$$\begin{split} \Phi_{\text{CDFT}}[\{N_{\alpha}\}] &\to T \int p_{\omega}(\ln p_{\omega} - 1) & \text{Non-interacting free energy} \\ &+ \Phi_{\text{HS}}[N] & \text{Hard-sphere entropy corrections} \\ &+ \int N_{\alpha} Z_{\alpha} \cdot \frac{1}{2|\vec{r} - \vec{r}'|} \cdot N_{\beta} Z_{\beta} & \text{Mean-field Coulomb interactions} \\ &+ \int NA_{\text{ex}}(w * N) & \text{Weighted density excess functional} \\ &+ \end{split}$$

• Employ exact free energy of non-interacting classical fluid (analogous to Kohn-Sham) in terms of orientation probability density p_{ω}

$$\begin{split} \Phi_{\text{CDFT}}[\{N_{\alpha}\}] &\to T \int p_{\omega}(\ln p_{\omega} - 1) & \text{Non-interacting free energy} \\ &+ \Phi_{\text{HS}}[N] & \text{Hard-sphere entropy corrections} \\ &+ \int N_{\alpha} Z_{\alpha} \cdot \frac{1}{2|\vec{r} - \vec{r'}|} \cdot N_{\beta} Z_{\beta} & \text{Mean-field Coulomb interactions} \\ &+ \int NA_{\text{ex}}(w * N) & \text{Weighted density excess functional} \\ &+ \alpha \int P^2 & \text{Local polarization correlations} \end{split}$$

Radial distribution around hard spheres

SPC/E data: K. Ding et al *Phys Rev Lett* **59** 1698 (1987)
 R. Sundararaman and T.A. Arias, *arXiv*:**1302.0026**

Voltage reference calibration

Best fit $\Rightarrow \mu_{SHE} = (-4.44 \pm 0.02) \text{ V}$

Cu²⁺ chemical potential calibration

Vacuum DFT predictions

Linearized $\Phi(\mu_e) = A(N_e^0) - \mu_e N_e^0$ assumes fixed N_e

Neutral PCM predictions

Linearized $\Phi(\mu_e) = A(N_e^0) - \mu_e N_e^0$ assumes fixed N_e

Polarizable continuum models

• Threshold electron density at n_c to define a cavity in the fluid (described by shape function $s(\vec{r}) = 0$ in the cavity and 1 in the fluid)

A. Andreussi, I. Dabo and N. Marzari, J. Chem. Phys. 136, 064102 (2012)

Polarizable continuum models

- Threshold electron density at n_c to define a cavity in the fluid (described by shape function $s(\vec{r}) = 0$ in the cavity and 1 in the fluid)
- Approximate effect of fluid by electrostatic response of nonuniform dielectric with $\epsilon(\vec{r}) = 1 + (\epsilon_b 1)s(\vec{r})$

A. Andreussi, I. Dabo and N. Marzari, J. Chem. Phys. 136, 064102 (2012)

Polarizable continuum models

- Threshold electron density at n_c to define a cavity in the fluid (described by shape function $s(\vec{r}) = 0$ in the cavity and 1 in the fluid)
- Approximate effect of fluid by electrostatic response of nonuniform dielectric with $\epsilon(\vec{r}) = 1 + (\epsilon_b 1)s(\vec{r})$
- Add empirical corrections for subdominant contributions (dispersion, cavity formation etc.)

A. Andreussi, I. Dabo and N. Marzari, J. Chem. Phys. 136, 064102 (2012)

Parameter fit: n_c and σ_{eff} to solvation energies

Nonlinear PCM free energy functional

• Electrostatic contribution to the free energy is

$$\begin{split} \Phi_{\epsilon} &= \int TN_{\text{mol}} s(\vec{r}) \left[\varepsilon^2 \left(f(\varepsilon) - \frac{\alpha}{2} f^2(\varepsilon) + \frac{X}{2} (1 - \alpha f(\varepsilon))^2 \right) - \log \frac{\sinh \varepsilon}{\varepsilon} \right] \\ &+ \int \frac{\rho_{\text{lq}}(\rho_{\text{el}} + \rho_{\text{lq}}/2)}{|\vec{r} - \vec{r}'|} \end{split}$$

where

$$\begin{split} \rho_{\epsilon}(\vec{r}) &\equiv -\vec{\nabla} \cdot \left[p_{\text{mol}} N_{\text{mol}} s(\vec{r}) \vec{\varepsilon} \left(f(\varepsilon) + X(1 - \alpha f(\varepsilon)) \right) \right] \\ f(\varepsilon) &\equiv (\varepsilon \, \coth \, \varepsilon - 1) / \varepsilon^2 \\ X &= \frac{T(\epsilon_{\infty} - 1)}{4\pi N_{\text{mol}} p_{\text{mol}}^2} \\ \alpha &= 3 - \frac{4\pi N_{\text{mol}} p_{\text{mol}}^2}{T(\epsilon_b - \epsilon_{\infty})} \end{split}$$

D. Gunceler, K. L.-Weaver, R. Sundararaman et al., arXiv:1301.6189