

Chris G. Van de Walle

Anderson Janotti, Lars Bjaalie, Luke Gordon, Burak Himmetoglu, K. Krishnaswamy Materials Department, University of California, Santa Barbara

Acknowledgments: NSF, ARO, ONR; XSEDE

ES2013 <u>June 11-14, 2013</u> Williamsburg, Virginia

http://www.mrl.ucsb.edu/~vandewalle

Complex oxides: ABO₃ perovskites

SrTiO₃: A = Sr, B= Ti LaAlO₃: A = La, B= Al

Complex oxides interfaces

Many interesting properties:

High-k dielectrics

- Colossal magnetoresistance
- ♦ Ferroelectricity
- Superconductivity
- Charge ordering
- Spin dependent transport

Interplay of structural, electronic and transport properties

Applications:

- Sensors
- Electrodes in fuel cells
- Memory devices (memristors)

SrTiO₃ and LaAlO₃: Wide-band-gap oxides

The two-dimensional electron gas at the STO/LAO interface "Where do the carriers come from?"

- 1. Polar catastrophe/ surface
- Oxygen vacancies (near the interface or in STO bulk)
- Ohtomo & Hwang, Nature **427**, 423 (2004). Mannhart et al., MRS Bull. Nov. 2008. Mannhart et al., MRS Bull. Nov. 2008.

Brinkman *et al.*, Nat. Matter. **6**, 493 (2007). Kalabukhov *et al.*, Phys. Rev. B **75**, 121404(R) (2007). Siemons *et al.*, Phys. Rev. Lett. **98**, 196802 (2007). Bristowe *et al.*, Phys. Rev. B **83**, 205405 (2011). Li *et al*, Phys. Rev. B **84**, 245307 (2011).

- Atomic intermixing (STO substrate, LAO surface, ...)
- 3. Electronic reconstructions

Nakagawa *et a*l., Nat. Matter. **5**, 204 (2006). Qiao *et al.*, Surf. Sci. **605**, 1381 (2011)

Pentcheva and Pickett, Phys. Rev. B **74**, 035112 (2006) Popovic et al, Phys. Rev. Lett. **101**, 256801 (2008)

"Problem" arises from ionic picture

All layers originally neutral

LaO ("donor") layer donates $0.5 e^-$ to AlO₂ on either side At the interface: "extra" $0.5 e^-$!...

STO/LAO interface

:

 $[Al^{3+}(O^{2-})_2]$ AIO₂ (001) LaO [La³⁺O²⁻] AIO₂ LaO AIO₂ LaO 0.5*e*⁻ **Free electrons** TiO₂ bound to a plane SrO of positive fixed TiO₂ charges SrO TiO₂ [Ti⁴⁺(O²⁻)₂] $[Sr^{2+}O^{2-}]$ SrO

Ideal interface: 0.5e⁻ per unit cell area

n=3x10¹⁴ cm⁻²

SrTiO₃, LaAlO₃, and STO/LAO from first principles

-Density functional theory, hybrid functional (HSE)

- J. Heyd, G.E. Scuseria and M. Ernzerhof,
- J. Chem. Phys. 118, 8207 (2003); 124, 219906(E) (2006).

A. Janotti, L. Bjaalie, L. Gordon, C. G. Van de Walle, Phys. Rev. B 86, 241108(R) (2012). UCSB

First-principles calculations

A. Janotti, L. Bjaalie, L. Gordon, C. G. Van de Walle, Phys. Rev. B 86, 241108(R) (2012). U C S B

Band alignments

Density functional theory, hybrid functional

In agreement with experimental results of Chambers *et al.*, Surface Science Reports (2010).

UCSB

First-principles calculations

UCSB

First principles versus Schrödinger-Poisson

STO/LAO/STO : Symmetric heterostructure

UCSB

• 0.5*e*⁻ per unit cell per interface

STO/LAO/STO – Asymmetric heterostructure LaO-terminated on the left, AlO₂-terminated on the right

- Potential increase across the LAO layer
- Low 2DEG density
 - electrons leak to other interface

charge density _____ conduction band _____ valence band _____

- potential increase across the LAO layer
- lower 2DEG density
 - electrons leak to surface

electrons go into surface states on LAO surface

STO/LAO: Surface LAO surface passivated

- Potential almost flat across the LAO layer
- High 2DEG density
 - hydrogen passivation, or metal cap layer (work function!)

R. Arras *et al.*, Phys. Rev. B 85, 125404 (2012).

Other materials combinations? SrTiO₃/GdTiO₃ superlattices

STO/GTO: 0.5 e- per unit cell per interface

P. Moetakef *et al.*, Appl. Phys. Lett. **99**, 232116 (2011).

P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, C. G. Van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. **99**, 232116 (2011).

Why is STO/GTO different from STO/LAO?

- Interface is *not* different
 - Confirmed by firstprinciples calculations
- But: STO can be grown with high quality on top of GTO!
 - ➔ symmetric interfaces
 - Superlattices
 - Full 2DEG density
- GTO surfaces:
 "auto-passivated"

P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, C. G. Van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. **99**, 232116 (2011).

GdTiO₃ properties

GTO a *3d*¹ Mott insulator: Mott/band insulator interface GTO unit cell: 20-atom orthorhombic, *Pnma* space group

GdTiO₃ properties

Ti 3d¹ electrons highly localized:

From strong intra-atomic electron-electron repulsion

First principles approaches:

DFT+U: static correlations, $U/W \gg 1$, T = 0

Hybrid functionals: Inclusion of exact Hartree-Fock exchange (self-interaction partially cancelled)

SrTiO₃/GdTiO₃ superlattices: band offsets

Calculating band offsets by using the (110) interface: no electron transfer

G. Conti *et al. J. Appl. Phys.* 113, 143704 (2013).

Summary

- First-principles calculations
- Schrödinger-Poisson modeling
- Hybrid functional capable of capturing the physics of Mott insulators and the STO/GTO system
- Electrons in the 2DEG at STO/LAO and STO/GTO are *intrinsic* to the interface
 - Asymmetry of interfaces (or interface+surface) causes electrons to leak away in the STO/LAO case
- "And so, my fellow theorists: ask not where the electrons come from—ask where the electrons disappear to."

Reference:

A. Janotti, L. Bjaalie, L. Gordon, and C. G. Van de Walle, Phys. Rev. B 86, 241108(R) (2012).

