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Graphene was predicted to be TI  
      see C. L. Kane and E. J. Mele, PRL 95, 226801 (2005). 

  

Background: 2D Topological Insulator State of graphene 

Main problem: the spin-orbit gap (ΔSO) of graphene is very small (ΔSO<0.1 meV 
~ 1K), because of the exceedingly weak spin-orbit coupling (SOC) of carbon 
atoms.  

The objective of this work: to enhance ΔSO with adatoms 
for the realization of QSH at room temperature. 

Bands of a graphene ribbon 

ΔSO 



SOC 

Coupling through GR 

Inject SOC of metal adatoms 
into graphene  

Transport in metal network that 
is mediated through graphene 

Two ways to produce TI states in graphene systems 

•  C. Weeks, J. Hu, J. Alicea, M. Franz and R.Q. Wu, "Engineering a robust 
quantum spin Hall state in graphene via adatom deposition", Phys. Rev. X, 
1, 021001 (2011). 

•  J. Hu, J. Alicea, R.Q. Wu, and M. Franz, "Giant topological insulator gap in 
graphene with 5d adatoms", Phys. Rev. Lett. 109, 266801 (2012). 



Why spin-orbit coupling: relativistic effect 
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Basic requirements for adatoms 

 
•  Carry large SOC (heavy elements) 
•  Preserve the time-reversal symmetry  
•  Take the hollow site 



SOC 

p-valent metal adatoms 
•  Adatoms provide SOC 

•  Current in graphene 

1. Inject SOC into graphene with p-valent adatoms 
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In Tl Sn Pb Sb Bi 

H 0 0 278 210 0 316 

T 91 83 10 17 175 26 

B 84 80 0 0 117 0 

Eb (eV) 
GGA 

Height(Å) 
GGA 

dC-M (Å) 
GGA 

Height(Å) 
LDA 

dC-M (Å) 
LDA 

In 1.029 2.44 2.83 2.35 2.74 

Tl 1.027 2.52 2.90 2.46 2.84 

M+GrMGrb EEE=E −+
Site preference 

Results of heavy p-valent adatoms on graphene 

Time reversal  
Sb/graphene is magnetic with a spin moment of 3.0 µB, so Sb should also be 
excluded    

Detailed results for two “good” p-valent adatoms, In and Tl 



Supercell 4×4 5×5 7×7 

Coverage (%) 6.25 4 2.04 

ΔSO (meV) 7 5 3 

The In- and Tl-induced SOC gap for the Dirac state 
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The coverage dependence of ΔSO for In/Gr   

ΔSO of Tl/graphene is still substantial (6.5 meV) 
even when the coverage decreases to about 1%.    



Transport simulation of Tl/graphene with the TB approach 

Two-terminal model for conductance  

Current distribution across a sample  G of Tl/Gr with realistic parameters from DFT 
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Δρ = ρ Gr+Tl( )− ρ Gr( )− ρ Tl( )
Planar average of Δρ  

Tl 

Gr plane 

9.87 Å
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Charge transfer from Tl to graphene: (4×4) supercell  

The Bader charge analysis indicates that each Tl adatom transfer 0.76 electron to graphene. 

This causes the Dirac point to 
shift down by more than 0.5 eV.  
It might be an important 
technical issue for the 
realization fo QSH in Tl(In)/
Graphene.    
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 2. Transport through 5d adlayer on graphene 

Coupling through GR 

5d transition metal adatoms 
•  Graphene mediates interaction between adatoms 

•  Current in adatom network 

•  Large SOC in the conducting channel  



Evolvement of band structure of 5d/graphene: TB analysis 

dxz/yz 

Hc=0, Λso=0  
  

Λso=0  Λso added  
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EVALUATION OF THE Z2 INVARIANT

The tight-binding model studied in the main text preserves
(three-dimensional) inversion symmetry about an adatom site,
which sends cr↵ ! c�r↵ and fmR↵ ! �fm�R↵. Thus one
can simultaneously diagonalize the Hamiltonian and the op-
erator R implementing this transformation. Fu and Kane [1]
showed that the Z2 invariant can be deduced very simply from
the inversion eigenvalues of energy eigenstates at the four
time-reversal-invariant momenta Pj that satisfy Pj = �Pj

up to a reciprocal lattice vector. For the 4 ⇥ 4 supercell con-
sidered in the main text these momenta are P1 = (0, 0) at
the zone center and P2 = (0, ⇡

2
p

3
), P3 = (⇡

4 , ⇡
4
p

3
), and

P4 = (⇡
4 ,� ⇡

4
p

3
) at the midpoints of the zone edges (here we

have set the lattice constant to unity).

Suppose that there are 2N fully occupied bands, enumer-
ated such that bands 2m�1 and 2m are Kramer’s partners that
thus transform in the same way under R. Let ⇠2m(Pj) be the
inversion eigenvalue for band 2m at time-reversal-invariant
momentum Pj . Fu and Kane’s Z2 invariant ⌫ then follows
from

(�1)⌫ =
4Y

j=1

NY

m=1

⇠2m(Pj). (1)

Trivial insulating states are characterized by ⌫ = 0 while
⌫ = 1 indicates a topological phase. By diagonalizing our
tight-binding model with periodic boundary conditions it is
straightforward to numerically extract ⇠2m(Pj) for all m and
j and hence evaluate the topological invariant for an insulat-
ing state using Eq. (1). Carrying out this procedure we find
that the spin-orbit-induced insulating phase discussed in the
main text is indeed topological, consistent with our identifica-
tion of edge states in numerical simulations of systems with
open boundaries.

As an interesting aside, we remark that Fig. 1(c) in the main
text shows that spin-orbit coupling actually opens three dif-
ferent insulating regimes. One can use the above criterion to
show that all of these are in fact topologically non-trivial. This
suggests that many if not all of the insulating regimes present
in our density functional theory simulations are also topologi-
cal, though most of these are not expected to be relevant phys-
ically since they require very large dopings to access.
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FIG. 1: Electronic properties of Os/graphene and (Cu-Os)/graphene
at 6.25% coverage without spin-orbit coupling. (a) Partial density
of states (PDOS) for the Os 5d orbitals in Os/graphene. Positive
and negative values on the horizontal axis correspond to the PDOS
for the spin majority and minority channels, respectively. The hori-
zontal dashed lines indicate the Fermi level. (b) Band structure for
Os/graphene. The solid and dashed lines respectively indicate major-
ity and minority spin bands, which are widely separated due to strong
moment formation in the non-relativistic limit. (d) Band structure of
(Cu-Os)/graphene. In both (b) and (c) the spectrum is always metal-
lic, demonstrating that the gaps found earlier indeed originate from
spin-orbit coupling.

DENSITY FUNCTIONAL THEORY METHODS

In our DFT simulations the positions of all atoms were
fully relaxed using the conjugated gradient method for energy
minimization until the calculated force on each atom became
smaller than 0.01 eV/Å. We used the projector augmented
wave (PAW) method for the description of the core-valence
interactions [2, 3]. A vacuum space of 15 Å was adopted to
separate the periodic graphene slabs. The two-dimensional
Brillouin zone was sampled by a 15 ⇥ 15 k-grid mesh [4].
The energy cutoff of the plane wave expansion was set to 500
eV.

ELECTRONIC PROPERTIES WITHOUT SPIN-ORBIT
COUPLING

To confirm that the band gaps induced by Os and Cu-
Os stem from spin-orbit coupling, we performed DFT cal-
culations for these adatoms at 6.25% coverage in the non-

SOC 

(c) 

DFT band structures of Os/Graphene before 
and after SOC being invoked 

The band gap originates from SOC and have the 
topological insulator feature 

ΔSO 
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Berry curvature distribution of Os/graphene 

erate while other points are doubly degenerate. When only
the exchange field is applied, the spin-up !spin-down" bands
are pushed upward !downward" as shown in panel !b". When
only Rashba SOC is turned on, spin-up and spin-down states
are mixed around the band crossing points and spin degen-
eracy is lifted. A bulk gap is opened when both Rashba SOC
and exchange field are present, and the four bands become
completely nondegenerate. The presence of such a bulk gap
indicates an insulating state. As we argue below, this insulat-
ing state is topologically nontrivial with gapless chiral edge
states and exhibiting a quantized charge Hall conductance.

The gapless chiral edge states can be clearly seen from the
energy spectrum of graphene ribbons. Figure 2!a" plots the
band structure of graphene ribbons, with zigzag edges and
800 atoms across the width. The parameters used here are
tSO=0.2 and !=0.18. One can easily distinguish the gapless
edge states from the bulk states. For a given Fermi level in
the gap, there exists four different edge states labeled as A,
B, C, and D. From v!k"= 1

"
!E!k"

!k , one can find that states A
and B !C and D" propagate along the same −x !+x" direction.
Panel !b" plots the wave-function distributions ###2 of the
four states across the width !only part of the ribbons with one
zigzag edge are plotted". One can observe that the wave
functions of the A and B states are localized at the left
boundary, with noticeable values on about 30 carbon atoms
whereas the wave functions of the C and D states are essen-
tially zero in this region. The contrary occurs on the other
boundary !not shown in the figure". This is topologically
distinct from the helical edge states of the quantum spin Hall
effect, where opposite spins propagate in opposite directions
along the same boundary.

The emergence of chiral edge states in the bulk gap is
intimately related to the topological property of the bulk
Bloch states in the valence bands. This is characterized by
the quantized charge Hall conductance: $yx=C e2 /h, where

C is an integer known as the Chern number16,17 and can be
calculated from

C =
1

2%
$

n
%

BZ
d2k&n, !2"

where &n is the momentum-space Berry curvature for the nth
band16,25,26

&n!k" = − $
n!"n

2 Im&#nk#vx##n!k'&#n!k#vy##nk'
!'n! − 'n"2 . !3"

The summation is over all occupied bands below the bulk
gap, 'n(En /", and vx!y" is the velocity operator. The abso-
lute value of C corresponds to the number of gapless chiral
edge states along an edge of the two-dimensional system.27

In Fig. 3!a", we plot the Berry curvature distribution & for
the valence bands in the momentum space. Panel !b" shows
the profile of the Berry curvature along the ky =0 intersec-
tion. We observe that the Berry curvature is peaked at the
corners of the first Brillouin zone. It has the same sign at the
inequivalent K and K! points because the honeycomb lattice
preserves the two-dimensional inversion symmetry for which
&!k"=&!−k". This is in contrast with the valley Hall effect,
found in graphene system with AB sublattice symmetry
breaking, where the Berry curvature at K and K! points has
opposite signs.9 We obtain the Chern number from the cur-
vature integration and find that C=2, in agreement with the
number of chiral edge states from tight-binding calculations.
Therefore the charge Hall conductance is exactly quantized
to $yx=2e2 /h when the Fermi level lies in the energy gap,
i.e., the system realizes the quantum anomalous Hall effect.

FIG. 1. Evolution of band structures of bulk graphene along the
profile of ky =0. Arrows represent the spin directions. !a" Pristine
graphene: spin-up and spin-down states are degenerate; !b" when
only exchange field !=0.4 is applied, the spin-up/spin-down bands
are upward/downward lifted with the four bands crossing near K
and K! points; !c" when only Rashba SOC tSO=0.1 is present, the
spin-up and spin-down states are mixed around the band crossing
points; !d" when both exchange field !=0.4 and Rashba SOC tSO
=0.1 are present, a bulk gap is opened and all four bands become
nondegenerate.

FIG. 2. !Color online" !a" Energy spectrum of zigzag-edged
graphene ribbons with tSO=0.2 and !=0.18. The Fermi level E
=0.06 corresponds to four different edge states A, B, C, and D. a is
the lattice constant. !b" Wave-function distributions ###2 across the
width for the four edge states !only part of the ribbons are shown":
A ,B states are localized at the left boundary, with noticeable values
of ###2 on about 30 carbon atoms while ###2 of C and D states are
completely zero in this region.
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5d transition metal elements with large SOC: Re, Os and Ir 
H T B 

Re 

Eb (eV) 1.90 0.89 0.89 
MS (µB) 0.35 4.93 3.32 
h (Å) 1.64 2.09 1.86 

dC-Re (Å) 2.17 2.09 2.09 

Os 

Eb (eV) 2.33 1.61 1.50 
MS (µB) 0.46 1.89 1.15 
h (Å) 1.66 1.99 1.92 

dC-Os (Å) 2.19 1.99 2.06 

Ir 

Eb (eV) 2.17 1.94 2.12 
MS (µB) 0.30 0.01 0.89 
h (Å) 1.71 1.96 1.89 

dC-Ir (Å) 2.23 1.96 2.03 

Re and Os are good candidates in terms of high segregation barriers 
away from the hollow site to other sites and small spin moments.  



DFT Band structures of graphene with 5d adatoms  

Os/graphene is the most interesting system due to 
both the huge ΔSO and the TI nature.  



supercell 4×4 5×5 7×7 10×10 

Coverage(%) 6.25 4 2.04 1 

ΔSO (eV) 0.27 0.26 0.26 0.17 

More analysis of electronic structure of Os/graphene 

Gap is large in a broad 
range of coverage.  
 
This striking feature is 
actually rather natural 
since the local atomic 
spin-orbit splitting for the 
Os dxz and dyz orbitals 
essentially sets ∆SO.  
  
But Os/Gr is magnetic. 



Negative electric field extracts 
electron charge on Os to graphene.  

Electric field to diminish magnetic moment of Os/graphene 

ΔSO=0.26 eV 



Co-adsorbates: weak interaction with graphene but strong interaction with Os to 
extract electron charge from Os. The magnetic moment of Os is quenched. 

Using co-adsorption to modify properties of Os/graphene 

Os on graphene depends sensitively on ". In particular,
" < 0 transfers additional charge from Os to graphene and
kills the moment for " & !0:3 V= !A. (Stray fields from
charged impurities may somewhat modify this condition.)
The electric fields required to restore time-reversal sym-
metry only weakly affect the band structure. See for
example, Fig. 4(b) corresponding to 6.25% Os coverage
with " ¼ !0:5 V= !A, where a time-reversal-invariant TI
appears with a gap "SO ¼ 0:26 eV.

Codoping provides another means to quench the Os
magnetic moment. To preserve the main features of
the band structure while attracting charge away from Os
(as accomplished by a negative "), coadsorbates should
interact weakly with graphene and exhibit larger electro-
negativity than Os. Following this guidance, we considered
Cu, Ag, and Au in several configurations, as described in

the Supplemental Material [37]. Whereas Os repels Ag and
Au adatoms, Cu prefers to climb over Os to form a vertical
Cu–Os dimer over the H site. The binding energy Eb¼
EðgrapheneÞþEðCuÞþEðOsÞ!EðCu!Os=grapheneÞ for
these dimers is 5.96 eV, higher by 2.50 eV compared to
that of well-separated Cu and Os adatoms. Additionally,
Cu more strongly anchors Os to the H site since the binding
energy for the vertical dimers over the top (bridge) site is
weaker by 1.27 (1.42) eV.
In practice, however, it is also essential that isolated Cu

and Os adatoms can readily dimerize without overcoming
substantial energy barriers. We explored this issue by
computing the energy (without SOC) along the diffusion
path depicted in Fig. 4(c), where a Cu adatom beginning at
position E ends up above an Os at position A. Figure 4(d)
illustrates the energy change "E relative to the dimer state
along this trajectory. The energy barrier for a Cu adatom
moving from location E to B is only &0:08 eV; once at
position B, the Cu strongly attracts to the top of the Os.
This suggests that dimer formation ought to proceed quite
efficiently. To better appreciate this effect, we also calcu-
lated the energy change for two Cu–Os dimers in an 8' 8
supercell, one residing at A while the other diffuses from E
to B. Large energy barriers exist for all hopping steps:
1.27 eV for E ! D, 1.25 eV for D ! C, and 0.7 eV for
C ! B, indicating that Cu–Os dimer diffusion is essen-
tially blocked at low temperature. We thus expect that
clustering of dilute 5d metal adatoms and dimers on gra-
phene should not be a concern.
Because of the hybridization and charge transfer between

the Cu and Os atoms—the Bader charges of Cu and Os
are respectively !0:21e and þ0:67e—DFT predicts that
graphene with Cu–Os dimers is nonmagnetic. The spectrum
for graphene with Cu–Os at 6.25% coverage again supports
a large TI gap "SO ¼ 0:21 eV, as is evident in the band
structure of Fig. 4(e). Moreover, the triangles in Fig. 3(c)
show that this gap exhibits similarly weak coverage
dependence, as for Os on graphene. The drawback here,
however, is that the Fermi level [green line in Fig. 4(e)]
now resides in the valence band. Returning the Fermi
level to the insulating regime should be possible with con-
ventional gating techniques, provided one works at low
coverage.
Alternatively, the hole introduced by each Cu–Os dimer

can be compensated by replacing Os with Ir, which has one
additional electron. Our calculations show that vertical
Cu–Ir dimers also strongly bind to the H site in graphene
without forming a magnetic moment. Hybridization
between Cu–Ir dimers and graphene produces nearly
the same band structure as for Cu–Os but with the
Fermi level lying in the band gap. See the band structure
for 6.25% Cu–Ir coverage in Fig. 4(f ), where the gap is
"SO ¼ 0:25 eV. Additional results for Ir on graphene—
which behaves similarly to the Os case—can be found in
the Supplemental Material [37].

(a)
(c)

(d)

(b) (e) (f)

FIG. 4 (color online). (a) Magnetic moment Ms for graphene
with Os versus external electric field " applied perpendicular to
the graphene sheet (see the inset for the direction of positive and
negative "). (b) Band structure of an Os–graphene system with
" ¼ !0:5 V= !A corresponding to a vanishing moment. The large
gap at the Fermi level (green dashed line) thus reflects a true TI
phase. (c) Possible diffusion path of a Cu atom or a Cu–Os
dimer, beginning from position E. The Cu atom ends above an
Os atom at position A; the Cu–Os dimer ends at position B,
adjacent to another Cu–Os dimer at position A. (d) Energy
profile for Cu (circles) and the Cu–Os dimer (triangles) along
the diffusion trajectory in (c). The small diffusion barrier evident
for the Cu atom indicates that Cu–Os dimers should readily
form. In contrast, the OðeVÞ diffusion barrier for the Cu–Os
dimer suggests a suppression of clustering at low coverages,
even at room temperature. (e) Band structure for Cu–Os dimers
on graphene. Time-reversal symmetry is preserved here even at
" ¼ 0, although the Fermi level now resides in the valence band.
(f) Band structure for Cu–Ir dimers on graphene. This system
preserves time-reversal symmetry, eliminates the shift in Fermi
level, and also supports a large TI gap. Coverage in (b), (e),
and (f) is 6.25%.
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The small diffusion barrier and large 
energy gain evident for the Cu atom 
indicates that Cu–Os dimers should 
readily form. 

Calculated energies for a CuOs dimer moving toward another CuOs dimer show that there 
is an high barrier, 1.3 eV. So the clustering of metals dimers are essentially blocked at room 
temperature.     



The (Cu-Os)/graphene is nonmagnetic and topological insulator gap is still giant (ΔSO=0.21 
eV at coverage of 6.25%).  
The drawback is that the Fermi level is about 0.1 eV bellow the valence band maximum, 
which implies that holes are introduced in graphene by Cu-Os dimers. This shortcoming may 
be eliminated by replacing Os by Ir. 

Electronic properties of (Cu-Os)/graphene 

(e) 



With SOC, (Cu-Ir)/graphene is a nonmagnetic “semiconductor” with 
ΔSO=0.25 eV. Another significant advantage is that Fermi level 
resides in the gap. 

Electronic properties of (Cu-Ir)/graphene 

ΔSO=0.25 eV 
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FIG. 2: (a) Density of states for periodic (solid curve) and random
(dashed curve) adatoms at 6.25% coverage on a graphene strip with
armchair edges along x and periodic boundary conditions along y.
Parameters are the same as for Fig. 1(c). The finite density of states
within the bulk gap reflects edge states. Examples of edge states for
the periodic and random cases respectively appear in (b) and (c).

Eb = E(graphene)+E(adatom)�E(adatom/graphene)]
and high diffusion energy barriers [defined as �E =
Eb(Transition state) � Eb(Ground state)]. Osmium satis-
fies both criteria. The binding energy for Os at the H site
in graphene is 2.42 eV—much larger than the ‘top’ (directly
above a C) and ‘bridge’ (above the midpoint of a C-C bond)
configurations for which Eb is 1.70 and 1.59 eV, respectively.
Moreover, the calculated diffusion barrier for an Os adatom to
diffuse from an H site through the top site is found to equal
the difference between the binding energies at these positions,
0.72 eV. The barrier for diffusion through the bridge site is
similarly given by 0.83 eV. Therefore Os adatoms should be
stable over H sites even at room temperature. By contrast most
3d transition metals have Eb ⇠ 1 eV [40] and are much more
mobile [40, 41]; for example, the diffusion barrier is only 0.40
eV for Co on graphene [42].

Figure 3(a) displays the DFT band structure for periodic H-
site Os adatoms on graphene at 6.25% coverage using the 4⇥4
supercell in Fig. 1(a). Each Os adatom forms a charge state
of +0.55e (based on the Bader charge division scheme [43]),
indicating that the Os-graphene bonds mix covalent and ionic
features. Clearly these bonds dramatically modify the charac-
teristic Dirac bands at the K point of pure graphene similar to
Fig. 1. Most importantly, Os induces a band gap �SO = 0.27
eV, right at the Fermi level given by the green dashed line in
Fig. 3(a). As in our tight-binding model the gap here results
solely from SOC. (Without SOC a gapless spectrum arises;
see the Supplemental Material.) More precisely, the partial
density of states (PDOS) for the Os 5d orbitals displayed in
Fig. 3(b) indicates that the gap arises from the hybridization
between graphene’s ⇡ states and the spin-orbit-split dxz and
dyz adatom orbitals, also as in our tight-binding model. The
PDOS for the dz2 , dx2�y2 , and dxy orbitals, by contrast, is
concentrated at much lower energies. Thus the gap-opening
mechanism introduced earlier indeed appears in the realistic
Os/graphene system.

The Os-induced gap depends exceptionally weakly on cov-
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FIG. 3: (a) First principles band structure for Os on graphene at
6.25% coverage. The green dashed line indicates the Fermi level. (b)
Corresponding partial density of states (PDOS) for the Os 5d levels.
The large gap �SO visible in (a) arises from hybridization between
graphene and the spin-orbit-split dxz/yz orbitals, as in our tight-
binding model. (c) Coverage dependence of the gap for graphene
with Os adatoms (circles) and Cu-Os dimers (triangles).

erage. To illustrate this important point we performed sim-
ulations of graphene with one Os adatom in 5 ⇥ 5, 7 ⇥ 7,
and 10 ⇥ 10 supercells (corresponding to coverages of 4%,
2.04%, and 1%). Circles in Fig. 3(c) show the DFT-predicted
gaps, which remain close to 0.2 eV even at 1% coverage. This
striking feature is actually rather natural since the local atomic
spin-orbit splitting for the Os dxz and dyz orbitals essentially
sets �SO.

Strictly speaking, a true TI phase does not arise in the DFT
simulations described above since Os forms small spin and or-
bital magnetic moments of 0.45 µB and 0.05 µB , respectively.
This produces visible splittings of the bands at the � and
M points corresponding to time-reversal-invariant momenta;
see Fig. 3(a). One should keep in mind, however, that DFT
can sometimes overestimate moment formation. Nonetheless,
even if a moment Ms indeed appears in an experiment, there
are practical means by which this can be quenched to zero to
reveal a bona fide topological phase. One effective approach
is to apply an external electric field ". Figure 4(a) illustrates
that Ms of Os on graphene depends sensitively on ". In par-
ticular " < 0 transfers additional charge from Os to graphene
and kills the moment for " . �0.3 V/Å. The electric fields
required to restore time-reversal symmetry only weakly affect
the band structure. See, for example, Fig. 4(b) corresponding
to 6.25% Os coverage with " = �0.5 V/Å, where a time-
reversal-invariant TI appears with a gap �SO = 0.26 eV.

Co-doping provides another means to quench the Os mag-
netic moment. To preserve the main features of the band struc-
ture while attracting charge away from Os (as accomplished
by a negative "), co-adsorbates should interact weakly with
graphene and exhibit larger electronegativity than Os. Fol-
lowing this guidance, we considered Cu, Ag, and Au in sev-
eral configurations as described in the Supplemental Material.

The edge state and effect of randomness: TB results  

TB calculations for a graphene strip with armchair edges clearly show 
the edge state within the bulk gap. These edge states remarkably 
survive even for randomly distributed adatoms.  



Conclusions 

"   Large SOC-gap can be produced in graphene using adatoms.  
"   p-valent adatoms may easily form clusters, so low 
temperature is essential for deposition and measurement. 
"   5d adatoms produce large and robust SOC-gap. 
"   The  magnetic moment of 5d atoms can be tuned by using 
either electric field or co-adsorption of Cu. 

" Cu-Ir/graphene is an ideal system for the realization of 2D 
QSH.    
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