

Topological insulator gap in graphene with heavy adatoms

ES2013, College of William and Mary

Ruqian Wu

Department of Physics and Astronomy, University of California, Irvine, California 92697

Supported by DOE-BES

Background: 2D Topological Insulator State of graphene

Graphene was predicted to be TI

see C. L. Kane and E. J. Mele, PRL 95, 226801 (2005).

Main problem: the spin-orbit gap (Δ_{SO}) of graphene is very small (Δ_{SO} <0.1 meV ~ 1K), because of the exceedingly weak spin-orbit coupling (SOC) of carbon atoms.

The objective of this work: to enhance Δ_{SO} with adatoms for the realization of QSH at room temperature.

Two ways to produce TI states in graphene systems

Inject SOC of metal adatoms into graphene

Transport in metal network that is mediated through graphene

- C. Weeks, J. Hu, J. Alicea, M. Franz and R.Q. Wu, "Engineering a robust quantum spin Hall state in graphene via adatom deposition", *Phys. Rev. X*, 1, 021001 (2011).
- J. Hu, J. Alicea, R.Q. Wu, and M. Franz, "Giant topological insulator gap in graphene with 5d adatoms", *Phys. Rev. Lett.* **109**, 266801 (2012).

Why spin-orbit coupling: relativistic effect

Basic requirements for adatoms

1. Inject SOC into graphene with p-valent adatoms

p-valent metal adatoms

- Adatoms provide SOC
- Current in graphene

Results of heavy p-valent adatoms on graphene

Time reversal

Sb/graphene is magnetic with a spin moment of 3.0 $\mu_{\text{B}},$ so Sb should also be excluded

Detailed results for two "good" p-valent adatoms, In and TI

	E _b (eV) GGA	Height(Å) GGA	d _{C-M} (Å) GGA	Height(Å) LDA	d _{C-M} (Å) LDA
In	1.029	2.44	2.83	2.35	2.74
T1	1.027	2.52	2.90	2.46	2.84

The In- and Tl-induced SOC gap for the Dirac state

The coverage dependence of Δ_{so} for In/Gr

Supercell	4×4	5×5	7×7
Coverage (%)	6.25	4	2.04
$\Delta_{\rm SO}~({\rm meV})$	7	5	3

 Δ_{SO} of TI/graphene is still substantial (6.5 meV) even when the coverage decreases to about 1%.

Transport simulation of Tl/graphene with the TB approach

Charge transfer from Tl to graphene: (4×4) supercell

The Bader charge analysis indicates that each TI adatom transfer 0.76 electron to graphene.

This causes the Dirac point to shift down by more than 0.5 eV. It might be an important technical issue for the realization fo QSH in Tl(In)/ Graphene.

2. Transport through 5d adlayer on graphene

5d transition metal adatoms

- Graphene mediates interaction between adatoms
- Current in adatom network
- Large SOC in the conducting channel

Evolvement of band structure of 5d/graphene: TB analysis

$$H = H_g + H_a + H_c$$

$$H_g = -t \sum_{\alpha=\uparrow,\downarrow} \sum_{\langle \mathbf{r}\mathbf{r}' \rangle} (c^{\dagger}_{\mathbf{r}\alpha} c_{\mathbf{r}'\alpha} + H.c.) \qquad H_a = \sum_{\mathbf{R}} \left[\sum_{\alpha=\uparrow,\downarrow} \sum_{m=\pm 1} \epsilon f^{\dagger}_{m\mathbf{R}\alpha} f_{m\mathbf{R}\alpha}$$

$$H_c = -t_c \sum_{\mathbf{R}} \sum_{\alpha=\uparrow,\downarrow} \sum_{m=\pm 1} (iC^{\dagger}_{m\mathbf{R}\alpha} f_{m\mathbf{R}\alpha} + H.c.) + \sum_{\alpha,\beta=\uparrow,\downarrow} \Lambda_{so} (f^{\dagger}_{1\mathbf{R}\alpha} s^{z}_{\alpha\beta} f_{1\mathbf{R}\beta} - f^{\dagger}_{-1\mathbf{R}\alpha} s^{z}_{\alpha\beta} f_{-1\mathbf{R}\beta}) \right]$$

DFT band structures of Os/Graphene before and after SOC being invoked

The band gap originates from SOC and have the topological insulator feature

Berry curvature distribution of Os/graphene

5d transition metal elements with large SOC: Re, Os and Ir

	25 Mn	26 Fe	27 Co	
	43 Tc	44 Ru	45 Rh	
	75 Re	76 OS	77 Ir	
220				9
3				2

		н	Т	В
	E _b (eV)	1.90	0.89	0.89
	$M_{S}(\mu_{B})$	0.35	4.93	3.32
Re	h (Å)	1.64	2.09	1.86
	d _{C-Re} (Å)	2.17	2.09	2.09
	E _b (eV)	2.33	1.61	1.50
	$M_{S}(\mu_{B})$	0.46	1.89	1.15
Os	h (Å)	1.66	1.99	1.92
	d _{C-Os} (Å)	2.19	1.99	2.06
lr	E _b (eV)	2.17	1.94	2.12
	$M_{S}(\mu_{B})$	0.30	0.01	0.89
	h (Å)	1.71	1.96	1.89
	d _{C-lr} (Å)	2.23	1.96	2.03

Re and Os are good candidates in terms of high segregation barriers away from the hollow site to other sites and small spin moments.

DFT Band structures of graphene with 5d adatoms

Os/graphene is the most interesting system due to both the huge Δ_{so} and the TI nature.

More analysis of electronic structure of Os/graphene

supercell	4×4	5×5	7×7	10×10
Coverage(%)	6.25	4	2.04	1
Δ _{SO} (eV)	0.27	0.26	0.26	0.17

Gap is large in a broad range of coverage.

This striking feature is actually rather natural since the local atomic spin-orbit splitting for the Os d_{xz} and d_{yz} orbitals essentially sets Δ_{SO} .

But Os/Gr is magnetic.

Electric field to diminish magnetic moment of Os/graphene

Negative electric field extracts electron charge on Os to graphene.

Using co-adsorption to modify properties of Os/graphene

Co-adsorbates: weak interaction with graphene but strong interaction with Os to extract electron charge from Os. The magnetic moment of Os is quenched.

 (\mathbf{d}) D

d (Å)

8

10

 $\Delta E (eV)$

-2

-3

indicates that Cu–Os dimers should readily form.

Calculated energies for a CuOs dimer moving toward another CuOs dimer show that there is an high barrier, 1.3 eV. So the clustering of metals dimers are essentially blocked at room temperature.

Electronic properties of (Cu-Os)/graphene

The (Cu-Os)/graphene is nonmagnetic and topological insulator gap is still giant ($\Delta_{SO}=0.21$ eV at coverage of 6.25%).

The drawback is that the Fermi level is about 0.1 eV bellow the valence band maximum, which implies that holes are introduced in graphene by Cu-Os dimers. This shortcoming may be eliminated by replacing Os by Ir.

Electronic properties of (Cu-Ir)/graphene

With SOC, (Cu-Ir)/graphene is a nonmagnetic "semiconductor" with $\Delta_{so}=0.25 \text{ eV}$. Another significant advantage is that Fermi level resides in the gap.

The edge state and effect of randomness: TB results

TB calculations for a graphene strip with armchair edges clearly show the edge state within the bulk gap. These edge states remarkably survive even for randomly distributed adatoms.

Conclusions

Large SOC-gap can be produced in graphene using adatoms.
p-valent adatoms may easily form clusters, so low temperature is essential for deposition and measurement.
5d adatoms produce large and robust SOC-gap.
The magnetic moment of 5d atoms can be tuned by using either electric field or co-adsorption of Cu.

Cu-Ir/graphene is an ideal system for the realization of 2D QSH.

Collaborators

Jun Hu, UC Irvine Jason Alicea, CalTech Marcel Franz, UBC